scholarly journals Event-Related Phase-Amplitude Coupling During Working Memory of Musical Chords

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 102649-102662
Author(s):  
Ting Huang ◽  
Hsien-Ming Ding ◽  
Yi-Li Tseng
NeuroImage ◽  
2013 ◽  
Vol 64 ◽  
pp. 416-424 ◽  
Author(s):  
Bradley Voytek ◽  
Mark D'Esposito ◽  
Nathan Crone ◽  
Robert T. Knight

2021 ◽  
Author(s):  
Judith Nicolas ◽  
Brad R King ◽  
David Levesque ◽  
Latifa Lazzouni ◽  
Emily BJ Coffey ◽  
...  

Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow waves (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.3-2 Hz) and sigma (12-16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough and the increase in sigma power nested in the trough of the potential evoked by these unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.


2019 ◽  
Author(s):  
Alejandra Figueroa-Vargas ◽  
Claudia Cárcamo ◽  
Rodrigo Henríquez-Ch ◽  
Francisco Zamorano ◽  
Ethel Ciampi ◽  
...  

AbstractWorking Memory (WM) impairment is the most common cognitive deficit of Multiple Sclerosis (MS) patients. However, evidence of its neurobiological mechanisms is scarce. Here we recorded electroencephalographic activity of twenty patients with relapsing-remitting MS and minimal cognitive deficit, and 20 healthy control (HC) subjects while they solved a WM task. In spite of similar performance, the HC group demonstrated both a correlation between temporoparietal theta activity and memory load, and a correlation between medial frontal theta activity and successful memory performances. MS patients did not show theses correlations leading significant differences between groups. Moreover, cortical connectivity analyses using granger causality and phase-amplitude coupling between theta and gamma revealed that HC group, but not MS group, presented a load-modulated progression of the frontal-to-parietal connectivity. This connectivity correlated with working memory capacity in MS groups. This early alterations in the oscillatory dynamics underlaying working memory could be useful for plan therapeutic interventions


2021 ◽  
Vol 11 (21) ◽  
pp. 9803
Author(s):  
Iván De La Pava Panche ◽  
Viviana Gómez-Orozco ◽  
Andrés Álvarez-Meza ◽  
David Cárdenas-Peña ◽  
Álvaro Orozco-Gutiérrez

Cross-frequency interactions, a form of oscillatory neural activity, are thought to play an essential role in the integration of distributed information in the brain. Indeed, phase-amplitude interactions are believed to allow for the transfer of information from large-scale brain networks, oscillating at low frequencies, to local, rapidly oscillating neural assemblies. A promising approach to estimating such interactions is the use of transfer entropy (TE), a non-linear, information-theory-based effective connectivity measure. The conventional method involves feeding instantaneous phase and amplitude time series, extracted at the target frequencies, to a TE estimator. In this work, we propose that the problem of directed phase-amplitude interaction detection is recast as a phase TE estimation problem, under the hypothesis that estimating TE from data of the same nature, i.e., two phase time series, will improve the robustness to the common confounding factors that affect connectivity measures, such as the presence of high noise levels. We implement our proposal using a kernel-based TE estimator, defined in terms of Renyi’s α entropy, which has successfully been used to compute single-trial phase TE. We tested our approach on the synthetic data generated through a simulation model capable of producing a time series with directed phase-amplitude interactions at two given frequencies, and on EEG data from a cognitive task designed to activate working memory, a memory system whose underpinning mechanisms are thought to include phase–amplitude couplings. Our proposal detected statistically significant interactions between the simulated signals at the desired frequencies for the synthetic data, identifying the correct direction of the interaction. It also displayed higher robustness to noise than the alternative methods. The results attained for the working memory data showed that the proposed approach codes connectivity patterns based on directed phase–amplitude interactions, that allow for the different cognitive load levels of the working memory task to be differentiated.


Author(s):  
A. Bachiller ◽  
J. Gomez-Pilar ◽  
J. Poza ◽  
P. Núñez ◽  
C. Gómez ◽  
...  

2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2016 ◽  
Vol 39 ◽  
Author(s):  
Arnon Lotem ◽  
Oren Kolodny ◽  
Joseph Y. Halpern ◽  
Luca Onnis ◽  
Shimon Edelman

AbstractAs a highly consequential biological trait, a memory “bottleneck” cannot escape selection pressures. It must therefore co-evolve with other cognitive mechanisms rather than act as an independent constraint. Recent theory and an implemented model of language acquisition suggest that a limit on working memory may evolve to help learning. Furthermore, it need not hamper the use of language for communication.


Sign in / Sign up

Export Citation Format

Share Document