scholarly journals Modified Linear Technique for the Controllability and Observability of Robotic Arms

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Jose de Jesus Rubio ◽  
Eduardo Orozco ◽  
Daniel Andres Cordova ◽  
Marco Antonio Islas ◽  
Jaime Pacheco ◽  
...  
2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


2006 ◽  
Vol 67 (5) ◽  
pp. 783-795 ◽  
Author(s):  
E. Yu. Zybin ◽  
M. Sh. Misrikhanov ◽  
V. N. Ryabchenko

Author(s):  
Tran Anh Quynh ◽  
Pham Duy Hien ◽  
Le Quang Du ◽  
Le Hoang Long ◽  
Nguyen Thi Ngoc Tran ◽  
...  

AbstractRobotic surgery offers three-dimensional visualization and precision of movement that could be of great value to gastrointestinal surgeons. There were many previous reports on robotic technology in performing Soave colonic resection and pull-through for Hirschsprung’s disease in children. This study described the follow-up of the Robotic-assisted Soave procedure for Hirschsprung’s disease in children. Robotic-assisted endorectal pull-through was performed using three robotic arms and an additional 5-mm trocar. The ganglionic and aganglionic segments were initially identified by seromuscular biopsies. The rest of the procedure was carried out according to the Soave procedure. We left a short rectal seromuscular sleeve of 1.5–2 cm above the dentate line. From December 2014 to December 2017, 55 pediatric patients were operated on. Age ranged from 6 months to 10 years old (median = 24.5 months). The aganglionic segment was located in the rectum (n = 38), the sigmoid colon (n = 13), and the left colon (n = 4). The mean total operative time was 93.2 ± 35 min (ranging from 80 to 180 min). Minimal blood was lost during the surgery. During the follow-up period, 41 patients (74.6%) had 1–2 defecations per day, 12 patients (21.8%) had 3–4 defecations per day, and 2 patients (3.6%) had more than 4 defecations per day. Fecal incontinence, enterocolitis, and mild soiling occurred in three (5.4%), four (7.3%), and two pediatric patients, respectively. Robotic-assisted Soave procedure for Hirschsprung’s disease in children is a safe and effective technique. However, a skilled robotic surgical team and procedural modifications are needed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masahiro Inagawa ◽  
Toshinobu Takei ◽  
Etsujiro Imanishi

AbstractMany cooking robots have been developed in response to the increasing demand for such robots. However, most existing robots must be programmed according to specific recipes to enable cooking using robotic arms, which requires considerable time and expertise. Therefore, this paper proposes a method to allow a robot to cook by analyzing recipes available on the internet, without any recipe-specific programming. The proposed method can be used to plan robot motion based on the analysis of the cooking procedure for a recipe. We developed a cooking robot to execute the proposed method and evaluated the effectiveness of this approach by analyzing 50 recipes. More than 25 recipes could be cooked using the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document