scholarly journals Formal modeling and verification of a blockchain-based crowdsourcing consensus protocol

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Hamra Afzaal ◽  
Muhammad Imran ◽  
Muhammad Umar Janjua ◽  
Sarada Prasad Gochhayat
2011 ◽  
Vol 22 (11) ◽  
pp. 2698-2715 ◽  
Author(s):  
Fang-Xiong XIAO ◽  
Zhi-Qiu HUANG ◽  
Zi-Ning CAO ◽  
Li-Zhong TU ◽  
Yi ZHU

2021 ◽  
pp. 174569162097058
Author(s):  
Olivia Guest ◽  
Andrea E. Martin

Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii324-iii324
Author(s):  
Derek Hanson ◽  
Nicolas Andre ◽  
Susan Chi ◽  
Mariella Filbin ◽  
Michael Fisher ◽  
...  

Abstract Embryonal tumors with multilayer rosettes (ETMR) are rare and highly-aggressive central nervous system (CNS) neoplasms which occur primarily in young children and carry a dismal prognosis. To date, no large clinical investigations have been conducted to determine the optimal therapy for ETMR. Data from retrospective case series suggest that our most aggressive standard therapies are not sufficient for cure in the majority of cases. New treatment approaches incorporating pre-clinical data and the known biology of ETMR are therefore urgently needed. A German drug screen using the patient-derived ETMR BT183 cell line and its xenograft revealed anti-tumor activity of topotecan, doxorubicin, and actinomycin D; three agents used infrequently for treating infant CNS tumors. Additional results from a small series of ETMR patients suggest that optimization of induction chemotherapy using these active agents may improve response and survival outcomes. In 2019, an international panel of pediatric neuro-oncology experts convened to advance therapy for ETMR. A consensus protocol was developed incorporating maximal safe surgical resection, induction chemotherapy with active pre-clinical agents, intrathecal chemotherapy, radiotherapy, and high-dose chemotherapy. This international consensus protocol represents the first prospective clinical investigation specific to ETMR and will be available through a treatment registry globally and as a clinical trial at select centers. The study aims to improve survival by providing aggressive, optimized therapy for ETMR and will serve as a platform to explore new biologically-promising agents. The investigation will also provide valuable prospective outcome data and correlative biological studies to serve as baseline comparators for future clinical trials.


Author(s):  
Si Liu ◽  
Peter Csaba Ölveczky ◽  
Muntasir Raihan Rahman ◽  
Jatin Ganhotra ◽  
Indranil Gupta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document