Risk Prediction of Wildlife-vehicle Collisions Comparing Machine Learning Methods and Data Use

Author(s):  
Raphaela Pagany ◽  
Javier Valdes ◽  
Wolfgang Dorner
2014 ◽  
Vol 2 (40) ◽  
pp. 1-48 ◽  
Author(s):  
Alex Bottle ◽  
Rene Gaudoin ◽  
Rosalind Goudie ◽  
Simon Jones ◽  
Paul Aylin

BackgroundNHS hospitals collect a wealth of administrative data covering accident and emergency (A&E) department attendances, inpatient and day case activity, and outpatient appointments. Such data are increasingly being used to compare units and services, but adjusting for risk is difficult.ObjectivesTo derive robust risk-adjustment models for various patient groups, including those admitted for heart failure (HF), acute myocardial infarction, colorectal and orthopaedic surgery, and outcomes adjusting for available patient factors such as comorbidity, using England’s Hospital Episode Statistics (HES) data. To assess if more sophisticated statistical methods based on machine learning such as artificial neural networks (ANNs) outperform traditional logistic regression (LR) for risk prediction. To update and assess for the NHS the Charlson index for comorbidity. To assess the usefulness of outpatient data for these models.Main outcome measuresMortality, readmission, return to theatre, outpatient non-attendance. For HF patients we considered various readmission measures such as diagnosis-specific and total within a year.MethodsWe systematically reviewed studies comparing two or more comorbidity indices. Logistic regression, ANNs, support vector machines and random forests were compared for mortality and readmission. Models were assessed using discrimination and calibration statistics. Competing risks proportional hazards regression and various count models were used for future admissions and bed-days.ResultsOur systematic review and empirical analysis suggested that for general purposes comorbidity is currently best described by the set of 30 Elixhauser comorbidities plus dementia. Model discrimination was often high for mortality and poor, or at best moderate, for other outcomes, for examplec = 0.62 for readmission andc = 0.73 for death following stroke. Calibration was often good for procedure groups but poorer for diagnosis groups, with overprediction of low risk a common cause. The machine learning methods we investigated offered little beyond LR for their greater complexity and implementation difficulties. For HF, some patient-level predictors differed by primary diagnosis of readmission but not by length of follow-up. Prior non-attendance at outpatient appointments was a useful, strong predictor of readmission. Hospital-level readmission rates for HF did not correlate with readmission rates for non-HF; hospital performance on national audit process measures largely correlated only with HF readmission rates.ConclusionsMany practical risk-prediction or casemix adjustment models can be generated from HES data using LR, though an extra step is often required for accurate calibration. Including outpatient data in readmission models is useful. The three machine learning methods we assessed added little with these data. Readmission rates for HF patients should be divided by diagnosis on readmission when used for quality improvement.Future workAs HES data continue to develop and improve in scope and accuracy, they can be used more, for instance A&E records. The return to theatre metric appears promising and could be extended to other index procedures and specialties. While our data did not warrant the testing of a larger number of machine learning methods, databases augmented with physiological and pathology information, for example, might benefit from methods such as boosted trees. Finally, one could apply the HF readmissions analysis to other chronic conditions.FundingThe National Institute for Health Research Health Services and Delivery Research programme.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Hesam Dashti ◽  
Yanyan Liu ◽  
Robert J Glynn ◽  
Paul M Ridker ◽  
Samia Mora ◽  
...  

Introduction: Applications of machine learning (ML) methods have been demonstrated by the recent FDA approval of new ML-based biomedical image processing methods. In this study, we examine applications of ML, specifically artificial neural networks (ANN), for predicting risk of cardiovascular (CV) events. Hypothesis: We hypothesized that using the same CV risk factors, ML-based CV prediction models can improve the performance of current predictive models. Methods: Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER; NCT00239681) is a multi-ethnic trial that randomized non-diabetic participants with LDL-C<130 mg/dL and hsCRP≥2 mg/L to rosuvastatin versus placebo. We restricted the analysis to white and black participants allocated to the placebo arm, and estimated the race- and sex-specific Pooled Cohorts Equations (PCE) 5-year risk score using race, sex, age, HDL-C, total cholesterol, systolic BP, antihypertensive medications, and smoking. A total of 218 incident CV cases occurred (maximum follow-up 5 years). For every participant in the case group, we randomly selected 4 controls from the placebo arm after stratifying for the baseline risk factors (Table 1). The risk factors from a total of n=1,090 participants were used to train and test the ANN model. We used 80% of the participants (n=872) for designing the network and left out 20% of the data (n=218) for testing the predictive model. We used the TensorFlow software to design, train, and evaluate the ANN model. Results: We compared the performances of the ANN and the PCE score on the 218 test subjects (Figure 1). The high AUC of the neural network (0.85; 95% CI 0.78-0.91) on this dataset suggests advantages of machine learning methods compared to the current methods. Conclusions: This result demonstrates the potential of machine learning methods for enhancing and improving the current techniques used in cardiovascular risk prediction and should be evaluated in other cohorts.


2012 ◽  
Vol 131 (10) ◽  
pp. 1639-1654 ◽  
Author(s):  
Jochen Kruppa ◽  
Andreas Ziegler ◽  
Inke R. König

Sign in / Sign up

Export Citation Format

Share Document