Parameter Tuning Method of Virtual Inertia Controller of Wind Turbines Considering Wind Power Fluctuation

Author(s):  
LI Haifeng ◽  
WANG Fan ◽  
JIN Tao ◽  
XU Guoyi
2014 ◽  
Vol 926-930 ◽  
pp. 919-922
Author(s):  
Jia Yu Xu

Wind power is also known as junk. This is because wind power fluctuations affect the security and stability operation. Wind power wind turbines created is mainly concerned with the speed of wind. Because of the wind direction uncertain, intermittent, and wake effects between each unit wind farm, wind turbines cannot make that kind of power according to the demand for energy as conventional generators. Due to the lack of experimental data, assess the volatility of wind power is still a lack of effective methods. This article studies the sample in a northeast wind farm power, and based on a sliding differential algorithm, distribution fitting and quantitative calculations describe the characteristics of wind power fluctuations. This article studies the sample in a northeast wind farm power, and based on a sliding difference algorithm, through the analysis showed that wind power fluctuations obey t location scale distribution. And it is affected by factors such as spatial and temporal distribution, there is a big difference between the output power fluctuation characteristics of wind farm output power and single wind turbine. This is due to the wind turbine suffered varying differences, and wake effects between field units, making the distribution of frequent power fluctuations; relative to a single unit, the fluctuation of the whole wind farm is more gentle, that is to say with the spatial distribution increased scale, wind power fluctuations presents certain "gentle effect."


Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


2021 ◽  
Vol 687 (1) ◽  
pp. 012103
Author(s):  
Zenggong Cao ◽  
Chunyi Wang ◽  
Bo Peng ◽  
Yasong Wang ◽  
Peng Du ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongli Zhang ◽  
Lijun Zhang ◽  
Zhiliang Dong

The optimization and tuning of parameters is very important for the performance of the PID controller. In this paper, a novel parameter tuning method based on the mind evolutionary algorithm (MEA) was presented. The MEA firstly transformed the problem solutions into the population individuals embodied by code and then divided the population into superior subpopulations and temporary subpopulations and used the similar taxis and dissimilation operations for searching the global optimal solution. In order to verify the control performance of the MEA, three classical functions and five typical industrial process control models were adopted for testing experiments. Experimental results indicated that the proposed approach was feasible and valid: the MEA with the superior design feature and parallel structure could memorize more evolutionary information, generate superior genes, and enhance the efficiency and effectiveness for searching global optimal parameters. In addition, the MEA-tuning method can be easily applied to real industrial practices and provides a novel and convenient solution for the optimization and tuning of the PID controller.


2016 ◽  
Vol 29 (3) ◽  
pp. 465-474 ◽  
Author(s):  
Jianda Han ◽  
Zhiqiang Zhu ◽  
Ziya Jiang ◽  
Yuqing He

2014 ◽  
Vol 568-570 ◽  
pp. 1031-1035
Author(s):  
Ju Tian ◽  
Yao Chen

The electro-hydraulic load simulator is an important equipment for aircraft hardware-in-the-loop simulation. An adaptive PID control method for compensating extraneous torque with simple structure and easy to implement is proposed according to the variation characteristics of load gradient in the load simulator. The control parameter tuning method is also given.


Sign in / Sign up

Export Citation Format

Share Document