The coordination mechanism of forward market and spot market under the cost-based electricity market model for Yunnan

Author(s):  
Chunfeng Mu ◽  
Yuhui Xing ◽  
Fan Zhang ◽  
Gaoquan Ma ◽  
Qinggui Chen ◽  
...  
2021 ◽  
Vol 157 (1) ◽  
Author(s):  
Mirjam Kosch ◽  
Regina Betz ◽  
Thomas Geissmann ◽  
Moritz Schillinger ◽  
Hannes Weigt

AbstractLow electricity prices put economic pressure on hydropower companies. A more flexible water fee design can counteract this pressure and support hydropower companies during times when market revenues are low. However, this comes at the cost of lower revenues for resource owners. Using a sample of cost data for 62 companies and revenue data derived from an electricity market model, we have quantified this trade-off for the case of Switzerland. We found that electricity market price developments dominate changes in water fees and that for the profitability of hydropower, electricity prices are more important than water fee levels. However, with electricity prices of around CHF 40 per MWh, water fees can make the difference between profit and loss. Therefore, while flexible water fee regimes shift the market risk from producers to resource owners to some extent, the extent of this risk shift depends on the detailed design of the flexible regime.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3296 ◽  
Author(s):  
Nur Mohammad ◽  
Yateendra Mishra

This paper presents an interactive trading decision between an electricity market operator, generation companies (GenCos), and the aggregators having demand response (DR) capable loads. Decisions are made hierarchically. At the upper-level, an electricity market operator (EMO) aims to minimise generation supply cost considering a DR transaction cost, which is essentially the cost of load curtailment. A DR exchange operator aims to minimise this transaction cost upon receiving the DR offer from the multiple aggregators at the lower level. The solution at this level determines the optimal DR amount and the load curtailment price. The DR considers the end-user’s willingness to reduce demand. Lagrangian duality theory is used to solve the bi-level optimisation. The usefulness of the proposed market model is demonstrated on interconnection of the Pennsylvania-New Jersey-Maryland (PJM) 5-Bus benchmark power system model under several plausible cases. It is found that the peak electricity price and grid-wise operation expenses under this DR trading scheme are reduced.


Memorias ◽  
2018 ◽  
pp. 58-66
Author(s):  
Johnny Valencia ◽  
Gerard Olivar ◽  
Johan Manuel Redondo ◽  
Danny Ibarra Vega ◽  
Carlos Peña Rincón

In this paper, we show the preliminary results in a proposed a model for the supply and demand of electricity in a domestic market based on system dynamics. Additionally, the model indicates piecewise smooth differential equations arising from the diagram of flows and levels, using dynamical systems theory for the study of the stability of the equilibrium points that have such a system. A bifurcation analysis approach is proposed to define and understand the complex behavior. Until now, no work has been reported related to this topic using bifurcations criteria. The growing interest in personal ways of self-generation using renewable sources can lead the national grid to a standstill and low investment in the system. However, it is essential to preserve the national network as a power supply support to domestic and enterprise demand. To understand this scenario, we include an analysis of zero-rate demand growth. Under this hypothesis, a none smooth bifurcation appears related to a policy which involves the variation of the capacity charge. As a first significant result, we found that it is possible to preserve the investments in the market since, through the capacity charge parameter, the system dynamics can be controlled. Then, from a business approach, it is necessary to know the effects of the capacity charge as the strategic policy in the system generation price scheme.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2946
Author(s):  
Jun Maekawa ◽  
Koji Shimada

Renewable energy sources produce less environmental impact and have little marginal cost. Thus, because of these characteristics, it is desirable to disseminate it for the purpose of economic efficiency. Because of the uncertainty in the supply of renewable energy and the special feature of electricity as a good, such as merit order curve, introducing forward markets is an essential factor in a liberalized market. In European countries, which have already established several mechanisms for managing liquidity including markets with several timelines, the market liquidity invites the investor to perform some speculative action. We present a simple electric power market model to analyze the speculative actions of electricity suppliers and the price effect of such actions. Moreover, we found that the speculative action improves the inelasticity of the demand in electricity market.


2019 ◽  
Vol 75 (1) ◽  
pp. 183-213
Author(s):  
Christian Gambardella ◽  
Michael Pahle ◽  
Wolf-Peter Schill

AbstractWe analyze the gross welfare gains from real-time retail pricing in electricity markets where carbon taxation induces investment in variable renewable technologies. Applying a stylized numerical electricity market model, we find a U-shaped association between carbon taxation and gross welfare gains. The benefits of introducing real-time pricing can accordingly be relatively low at relatively high carbon taxes and vice versa. The non-monotonous change in welfare gains can be explained by corresponding changes in the inefficiency arising from “under-consumption” during low-price periods rather than by changes in wholesale price volatility. Our results may cast doubt on the efficiency of ongoing roll-outs of advanced meters in many electricity markets, since net benefits might only materialize at relatively high carbon tax levels and renewable supply shares.


Sign in / Sign up

Export Citation Format

Share Document