A Novel Approach to Approximate Kullback-Leibler Distance Rate for Hidden Markov Models

Author(s):  
Hongkang Liang ◽  
R.C. Anderson-Sprecher ◽  
R.F. Kubichek ◽  
G. Talwar
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Duncan

Abstract Advances in sociophonetic research resulted in features once sorted into discrete bins now being measured continuously. This has implied a shift in what sociolinguists view as the abstract representation of the sociolinguistic variable. When measured discretely, variation is variation in selection: one variant is selected for production, and factors influencing language variation and change are influencing the frequency at which variants are selected. Measured continuously, variation is variation in execution: speakers have a single target for production, which they approximate with varying success. This paper suggests that both approaches can and should be considered in sociophonetic analysis. To that end, I offer the use of hidden Markov models (HMMs) as a novel approach to find speakers’ multiple targets within continuous data. Using the lot vowel among whites in Greater St. Louis as a case study, I compare 2-state and 1-state HMMs constructed at the individual speaker level. Ten of fifty-two speakers’ production is shown to involve the regular use of distinct fronted and backed variants of the vowel. This finding illustrates HMMs’ capacity to allow us to consider variation as both variant selection and execution, making them a useful tool in the analysis of sociophonetic data.


2011 ◽  
Vol 109 ◽  
pp. 313-317
Author(s):  
Rui Ge Zhang ◽  
Yong Hong Tan

This paper presents a novel approach to detect the fault categories for rolling element bearings based on the continuous wavelet transform and hidden Markov models. With the Morlet wavelet transform, the effective fault information is extracted from the time-frequency domain of the vibration signals. Then, the wavelet coefficients are divided into multi-segments, and the infinity-norms of each segment is applied as the features to construct the observation vector of the hidden Markov models. Finally, the experimental results on bearing faults identification and isolation are illustrated.


2015 ◽  
Vol 135 (12) ◽  
pp. 1517-1523 ◽  
Author(s):  
Yicheng Jin ◽  
Takuto Sakuma ◽  
Shohei Kato ◽  
Tsutomu Kunitachi

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Sign in / Sign up

Export Citation Format

Share Document