Ground-Based Emitter Location in the Presence of Multipath

Author(s):  
Craig S. Agate ◽  
Matthew Varble ◽  
Kenan O. Ezal
Keyword(s):  
Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2097-2105
Author(s):  
Xiaozhuo Qi ◽  
Tsz Wing Lo ◽  
Di Liu ◽  
Lantian Feng ◽  
Yang Chen ◽  
...  

AbstractPlasmonic nanocavities comprised of metal film-coupled nanoparticles have emerged as a versatile nanophotonic platform benefiting from their ultrasmall mode volume and large Purcell factors. In the weak-coupling regime, the particle-film gap thickness affects the photoluminescence (PL) of quantum emitters sandwiched therein. Here, we investigated the Purcell effect-enhanced PL of monolayer MoS2 inserted in the gap of a gold nanoparticle (AuNP)–alumina (Al2O3)–gold film (Au Film) structure. Under confocal illumination by a 532 nm CW laser, we observed a 7-fold PL peak intensity enhancement for the cavity-sandwiched MoS2 at an optimal Al2O3 thickness of 5 nm, corresponding to a local PL enhancement of ∼350 by normalizing the actual illumination area to the cavity’s effective near-field enhancement area. Full-wave simulations reveal a counterintuitive fact that radiation enhancement comes from the non-central area of the cavity rather than the cavity center. By scanning an electric dipole across the nanocavity, we obtained an average radiation enhancement factor of about 65 for an Al2O3 spacer thickness of 4 nm, agreeing well with the experimental thickness and indicating further PL enhancement optimization. Our results indicate the importance of configuration optimization, emitter location and excitation condition when using such plasmonic nanocavities to modulate the radiation properties of quantum emitters.


Author(s):  
Eva Lagunas ◽  
Monica Navarro ◽  
Pau Closas ◽  
Montse Najar ◽  
Ricardo Garcia-Gutierrez ◽  
...  

IR-UWB has emerged as a promising candidate for positioning passive nodes in wireless networks due to its extremely short time domain transmitted pulses. The two-step approaches in which first different TOAs are estimated and then fed into a triangulation procedure are suboptimal in general. This is because in the first stage of these methods, the measurements at distinct anchors are independent and ignore the constraint that all measurements must be consistent with a single emitter location. In this chapter, the authors investigate two techniques to overcome this issue. First, a two-step procedure based on multi-TOA estimation is proposed. Second, a positioning approach omitting the intermediate known as DPE is presented. Complementarily, the authors explore the CS-based modeling of both approaches so that the temporal sparsity of the UWB received signal and the consequent sparseness of the discrete spatial domain are exploited to select the most significant TOAs and to reduce the amount of information to be sent to a central fusion unit in the DPE approach.


Sign in / Sign up

Export Citation Format

Share Document