Radiation efficiency of broadside conductor-backed CPW-fed twin slot antennas on two-layer dielectric substrate

Author(s):  
J. Jacobs ◽  
J. Joubert ◽  
J.W. Odendaal
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Marek Dvorsky ◽  
Harihara S. Ganesh ◽  
S. Sadhish Prabhu

This paper introduces an improved shape of Antipodal Vivaldi Antenna from the normal schematic structure which yields a high radiation gain. We have designed and fabricated the improved structure of Antipodal Vivaldi Antenna with the help of new dielectric substrate ASTRA®MT77 material. We have chosen a unique substrate material to develop our novel Antipodal Vivaldi Antenna because most research has been done on commonly used materials like FR4, RT Duroid, etc. Moreover, ISOLA has significantly good electrical and nonelectrical properties as compared with other substrate materials. The results of the desired antenna were simulated through extensive simulations performed in CST Microwave Studio®. The characteristics of all the antenna parameters are clearly studied and we are successful to achieve closed results between designed as well as experimented Vivaldi Antenna. The simulated antenna achieved a maximum gain of more than 9 dBi whereas the experimental antenna reached around 7 dBi between the operating frequency range from 1 GHz to 13 GHz. The measured prototype antenna provides linear polarization with overall radiation efficiency of more than 90%.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. R. Ahsan ◽  
M. T. Islam ◽  
M. Habib Ullah ◽  
W. N. L. Mahadi ◽  
T. A. Latef

This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.


Sign in / Sign up

Export Citation Format

Share Document