Inverse Dynamic model identification of 2-axes PAM robot arm using neural MIMO NARX model

Author(s):  
Ho Pham Huy Anh
2014 ◽  
Vol 17 (1) ◽  
pp. 62-80
Author(s):  
Anh Pham Huy Ho ◽  
Nam Thanh Nguyen

In this paper, a novel inverse dynamic fuzzy NARX model is used for modeling and identifying the IPMC-based actuator’s inverse dynamic model. The contact force variation and highly nonlinear cross effect of the IPMC-based actuator are thoroughly modeled based on the inverse fuzzy NARX model-based identification process using experiment input-output training data. This paper proposes the novel use of a modified particle swarm optimization (MPSO) to generate the inverse fuzzy NARX (IFN) model for a highly nonlinear IPMC actuator system. The results show that the novel inverse dynamic fuzzy NARX model trained by MPSO algorithm yields outstanding performance and perfect accuracy.


2010 ◽  
Vol 63 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Peter Paul Pott ◽  
Achim Wagner ◽  
Essameddin Badreddin ◽  
Hans-Peter Weiser ◽  
Markus L. R. Schwarz

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1849
Author(s):  
Jianbo Liu ◽  
Rongqiang Guan ◽  
Yongming Yao ◽  
Hui Wang ◽  
Linqiang Hu

In this paper, we propose a novel kinematic and inverse dynamic model for the flybar-less (FBL) swashplate mechanism of a small-scale unmanned helicopter. The swashplate mechanism is an essential configuration of helicopter flight control systems. It is a complex, multi-loop chain mechanism that controls the main rotor. In recent years, the demand for compact swashplate designs has increased owing to the development of small-scale helicopters. The swashplate mechanism proposed in this paper is the latest architectures used for hingeless rotors without a Bell-Hiller mixer. Firstly, the kinematic analysis is derived from the parallel manipulators concepts. Then, based on the principle of virtual work, a methodology for deriving a closed-form dynamic equation of the FBL swashplate mechanism is developed. Finally, the correctness and efficiency of the presented analytical model are demonstrated by numerical examples and the influence factors of the loads acted on actuators are discussed.


2007 ◽  
Vol 27 (6) ◽  
pp. 1346-1355 ◽  
Author(s):  
A. M. Green ◽  
H. Meng ◽  
D. E. Angelaki

Sign in / Sign up

Export Citation Format

Share Document