Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication

Author(s):  
Farooq Khan ◽  
Zhouyue Pi ◽  
Sridhar Rajagopal
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Sun-Kuk Noh ◽  
DongYou Choi

Rapidly rising demand for radio communication and the explosion in the number of mobile communications service subscribers have led to the need for optimization in the development of fifth-generation (5G) mobile communication systems. Previous studies on the development of propagation models considering a propagation environment in the existing microwave band have been mainly focused on analyzing the propagation characteristics with regard to large-scale factors such as path losses, delay propagation, and angle diffusions. In this paper, we investigated the concept of spatial and time changes ratios in the measurement of wave propagations and measured RSRP of Long Term Evolution (LTE) signals at three locations considering the time rate of 1% and 50%. We confirmed the concept of spatial and time changes rate based on the results of analyzing the signal data measured and proposed the propagation models 1 and 2 in microcell downtown. The forecast results using proposed models 1 and 2 were better than the COST231 model in both indoor and outdoor measured places. It was predicted between a time rate of 1% and 50% indoor within 400m and outdoor within 200m. In the future, we will study the propagation model of 5G mobile communication as well as the current 4G communication using artificial intelligence technology.


2020 ◽  
Vol 38 (2) ◽  
pp. 409-420 ◽  
Author(s):  
Minkyu Sung ◽  
Joonyoung Kim ◽  
Eon-Sang Kim ◽  
Seung-Hyun Cho ◽  
Young-Jun Won ◽  
...  

Author(s):  
Charilaos Kourogiorgas ◽  
Nektarios Moraitis ◽  
Athanasios D. Panagopoulos

5G mobile communication networks are emerging in order to cover the extreme needs for high data rates for delivering multimedia data to mobile communication users. The required bandwidth may be found if millimeter wave bands are fully employed for the establishment of such cellular systems. In this Book Chapter the propagation issues for 5G mobile communication systems are rigorously analyzed and presented. Firstly, the most popular scenarios and architectures of the next generation mobile systems are described and the channel models utilized for the evaluation of physical layer techniques (air interface are given. Secondly, the channel effects are described, i.e. effects due to local environment of the transceivers, atmospheric effects and their combination and the state of the art on the modeling of these effects is analytically presented. Finally, future directions for the propagation and channel model prediction for the next generation mobile communication systems -5G millimeter wave cellular systems are analyzed. Open issues and technical challenges of millimeter wave (mmWave) 5G cellular systems are finally described.


Sign in / Sign up

Export Citation Format

Share Document