scholarly journals Recursive Least Square and Fuzzy Modelling Using Genetic Algorithm for Process Control Application

Author(s):  
Ribhan Zafira Abdul Rahman ◽  
Rubiyah Yusof ◽  
Marzuki Khalid
Author(s):  
Parikshit Mehta ◽  
Laine Mears

This work presents a systems approach in machining process control. Traditional force-based machining process control has been focused on single machine-single operation. The force or power sensor is used to measure the instantaneous force/power, and control action is taken by changing the feedrate in real time to follow a given force setpoint. The application of such control has successfully been implemented to prevent chatter and to elongate tool life by minimizing tool wear. This research seeks to extend the application of control algorithms to learn about the machining system (comprised in this context of a workpiece being operated on in progressive machining), and how knowledge generated by the process can be passed on to the next process for optimization. To demonstrate this, turning of a partially hardened bar is explored. A nonlinear mechanistic force model-based control framework attempts to control the cutting force at a designated setpoint, with material properties changing over the cut. The force coefficients for the material are calculated offline using experimental data and Bayesian inference methods. Since the hardened part of the bar will shift the force coefficient values, an online estimation strategy (Bayesian Recursive Least Square estimator) is used to learn the new coefficients as well as satisfying the control objective. With the newly learned coefficients passed downstream, the subsequent operation experiences no compromise of control objective as well reduces the maximum values of force encountered. Numerical analyses presented show the adaptation and control scheme performance.


2011 ◽  
Vol 348 (7) ◽  
pp. 1717-1737 ◽  
Author(s):  
Rubiyah Yusof ◽  
Ribhan Zafira Abdul Rahman ◽  
Marzuki Khalid ◽  
Mohd Faisal Ibrahim

Author(s):  
L. Galotto ◽  
J.O.P. Pinto ◽  
J.A. Bottura Filho ◽  
G. Lambert-Torres

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Andriy Chaban ◽  
Marek Lis ◽  
Andrzej Szafraniec ◽  
Radoslaw Jedynak

Genetic algorithms are used to parameter identification of the model of oscillatory processes in complicated motion transmission of electric drives containing long elastic shafts as systems of distributed mechanical parameters. Shaft equations are generated on the basis of a modified Hamilton–Ostrogradski principle, which serves as the foundation to analyse the lumped parameter system and distributed parameter system. They serve to compute basic functions of analytical mechanics of velocity continuum and rotational angles of shaft elements. It is demonstrated that the application of the distributed parameter method to multi-mass rotational systems, that contain long elastic elements and complicated control systems, is not always possible. The genetic algorithm is applied to determine the coefficients of approximation the system of Rotational Transmission with Elastic Shaft by equivalent differential equations. The fitness function is determined as least-square error. The obtained results confirm that application of the genetic algorithms allow one to replace the use of a complicated distributed parameter model of mechanical system by a considerably simpler model, and to eliminate sophisticated calculation procedures and identification of boundary conditions for wave motion equations of long elastic elements.


Author(s):  
Omar Avalos ◽  
Erik Cuevas ◽  
Héctor G. Becerra ◽  
Jorge Gálvez ◽  
Salvador Hinojosa ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 505
Author(s):  
Jianfeng Chen ◽  
Jiantian Sun ◽  
Shulin Hu ◽  
Yicai Ye ◽  
Haoqian Huang ◽  
...  

A variety of accurate information inputs are of great importance for automotive control. In this paper, a novel joint soft-sensing strategy is proposed to obtain multi-information under diverse vehicle driving scenarios. This strategy is realized by an information interaction including three modules: vehicle state estimation, road slope observer and vehicle mass determination. In the first module, a variational Bayesian-based adaptive cubature Kalman filter is employed to estimate the vehicle states with the time-variant noise interference. Under the assumption of road continuity, a slope prediction model is proposed to reduce the time delay of the road slope observation. Meanwhile, a fast response nonlinear cubic observer is introduced to design the road slope module. On the basis of the vehicle states and road slope information, the vehicle mass is determined by a forgetting-factor recursive least square algorithm. In the experiments, a contrasted strategy is introduced to analyse and evaluate performance. Results declare that the proposed strategy is effective and has the advantages of low time delay, high accuracy and good stability.


2012 ◽  
Vol 22 (6) ◽  
pp. 1145-1153 ◽  
Author(s):  
Maw-Lin Leou ◽  
Yi-Ching Liaw ◽  
Chien-Min Wu

Sign in / Sign up

Export Citation Format

Share Document