Leak Detection and Location in Great Longitude Pipelines through Speed Propagation of the Negative Pressure Wave

Author(s):  
Luis Ismael Minchala ◽  
Jhony Alexander Calderon ◽  
Luis Eduardo Garza ◽  
Eduardo Robinson Calle
2013 ◽  
Vol 313-314 ◽  
pp. 1225-1228 ◽  
Author(s):  
Chun Xia Hou ◽  
Er Hua Zhang

Pipeline leak lead to huge economic losses and environmental pollution. Leak detection system based on single sensor negative pressure wave often causes false alarm. In this paper the double sensor method is adopted to exclude false alarm by determining the propagation direction of the pressure wave. In order to remove the inverse coherent interference caused by pump running, the phase difference of primary low frequency component is used to identify the sign of the time delay between the double sensors. The experiment shows the mothod is effective.


ICPTT 2012 ◽  
2012 ◽  
Author(s):  
Chi Chen ◽  
Huijun Zhao ◽  
Xiaobin Wang ◽  
Ning Zhou ◽  
Shuli Wang

Author(s):  
Peter Y. Han ◽  
Mark S. Kim

Different leak detection technologies offer different benefits and limitations. Popular options include real-time transient models, statistical volume balance analysis and negative pressure wave systems. Atmos offers a combination of different systems to improve the leak detection performance on a pipeline. This paper outlines the very successful integration of a Statistical Volume Balance System and a Negative Pressure Wave System on a crude oil pipeline. The live product withdrawal tests demonstrated that the combined system maximized the reliability, detection speed, location accuracy and sensitivity of the overall leak detection system. This paper will examine the benefits and technical challenges of combining these two leak detection technologies. The integrated solution delivers the reliability and robustness of the Statistical Volume Balance System together with the rapid response time and location accuracy of the Negative Pressure Wave System. The field application of the two systems integrated on a 170 kilometer crude oil pipeline will be explained in detail, along with the results of some actual controlled product withdrawal tests on the pipeline.


Author(s):  
Dongliang Yu ◽  
Laibin Zhang ◽  
Liang Wei ◽  
Zhaohui Wang

The appearance of a rupture, leak or damage in the long-distance oil & gas pipeline, which could cause a leak, usually generates a non-linear & chaotic negative pressure wave signal. By properly interpreting the negative pressure wave signature, it is possible to detect a leak along the pipeline. Most traditional noise reduction methods are established based on the linear system, which are not in line with the actual non-linear & chaotic situation. Therefore, the weak negative pressure wave signals, generated by small leaks, are often filtered out and cause false alarm and failure alarm. In order to resolve the problem, this paper uses the non-linear projective algorithm for noise reduction. First, the weak negative pressure wave signal series would be reconstructed using delay coordinates, in the high dimensional phase space, the background signal, the negative pressure wave signal and the noise signal are separated into different sub-spaces. Through the reconstruction of sub-spaces, the weak pressure wave signal can be isolated from the background signal as well as the random noise component reduced.


Sign in / Sign up

Export Citation Format

Share Document