scholarly journals Novel Negative Pressure Wave-Based Pipeline Leak Detection System Using Fiber Bragg Grating-Based Pressure Sensors

2017 ◽  
Vol 35 (16) ◽  
pp. 3366-3373 ◽  
Author(s):  
Jiqiang Wang ◽  
Lin Zhao ◽  
Tongyu Liu ◽  
Zhen Li ◽  
Tong Sun ◽  
...  
2013 ◽  
Vol 313-314 ◽  
pp. 1225-1228 ◽  
Author(s):  
Chun Xia Hou ◽  
Er Hua Zhang

Pipeline leak lead to huge economic losses and environmental pollution. Leak detection system based on single sensor negative pressure wave often causes false alarm. In this paper the double sensor method is adopted to exclude false alarm by determining the propagation direction of the pressure wave. In order to remove the inverse coherent interference caused by pump running, the phase difference of primary low frequency component is used to identify the sign of the time delay between the double sensors. The experiment shows the mothod is effective.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 441
Author(s):  
Yapeng Zhang ◽  
Congxin Chen ◽  
Yun Zheng ◽  
Yong Shao ◽  
Chaoyi Sun

Joints between diaphragm wall panels are weak spots in wall construction. It is essential that potential leak sites are detected prior to excavation. In this study, a novel leak detection and monitoring system is presented that is based on fiber Bragg grating (FBG) sensing technology. A field study was performed in a deep excavation supported by diaphragm walls (in Hohhot, China) to validate the feasibility and effectiveness of the proposed method. Two schemes were trialed; one using pipes made of stainless steel, and one used a pipeless method. The results of the field study are presented and discussed. They show that potential leak sites in the wall joints could be determined prior to excavation using the proposed detection method. Stainless steel is a good material to use to make the detection tube because it can protect the FBG sensors and heating belts from damage and is more sensitive to water leakage. The field study provides good evidence for the feasibility of the new detection system. It also provides valuable experience for the field application of the system and has generated useful data to use in follow-up work.


ICPTT 2012 ◽  
2012 ◽  
Author(s):  
Chi Chen ◽  
Huijun Zhao ◽  
Xiaobin Wang ◽  
Ning Zhou ◽  
Shuli Wang

Author(s):  
Peter Y. Han ◽  
Mark S. Kim

Different leak detection technologies offer different benefits and limitations. Popular options include real-time transient models, statistical volume balance analysis and negative pressure wave systems. Atmos offers a combination of different systems to improve the leak detection performance on a pipeline. This paper outlines the very successful integration of a Statistical Volume Balance System and a Negative Pressure Wave System on a crude oil pipeline. The live product withdrawal tests demonstrated that the combined system maximized the reliability, detection speed, location accuracy and sensitivity of the overall leak detection system. This paper will examine the benefits and technical challenges of combining these two leak detection technologies. The integrated solution delivers the reliability and robustness of the Statistical Volume Balance System together with the rapid response time and location accuracy of the Negative Pressure Wave System. The field application of the two systems integrated on a 170 kilometer crude oil pipeline will be explained in detail, along with the results of some actual controlled product withdrawal tests on the pipeline.


Author(s):  
XianYong Qin ◽  
LaiBin Zhang ◽  
ZhaoHui Wang ◽  
Wei Liang

Reliability, sensitivity and detecting time under practical operational conditions are the most important parameters of a leak detection system. With the development of hardware and software, more and more pipelines are installed with advanced SCADA (Supervisory Control and Data Acquisition) system, so the compatibility of the leak detection system with SCADA system is also becoming important today. Pipeline leakage generates a sudden change in the pipeline pressure and flow. The paper introduces leak detecting methods according to the pipeline pressure wave change. In order to improve the compatibility of the leak detecting system, “OPC (Ole for process Control)” technology is used for obtaining the pressure signals from the distributed data collection system. Special focus is given on analysis of the pressure signals. It is successful to denoise the signals by means of wavelet scale shrinkage, and to capture the leak time tag using wavelet transform modulus maximum for locating the leak position accurately. A leak detecting system is established based on SCADA system. Tests and practical applications show that it locates leak position precisely. Good performance is obtained on both crude oil pipeline and product pipeline.


Author(s):  
Dongliang Yu ◽  
Laibin Zhang ◽  
Liang Wei ◽  
Zhaohui Wang

The appearance of a rupture, leak or damage in the long-distance oil & gas pipeline, which could cause a leak, usually generates a non-linear & chaotic negative pressure wave signal. By properly interpreting the negative pressure wave signature, it is possible to detect a leak along the pipeline. Most traditional noise reduction methods are established based on the linear system, which are not in line with the actual non-linear & chaotic situation. Therefore, the weak negative pressure wave signals, generated by small leaks, are often filtered out and cause false alarm and failure alarm. In order to resolve the problem, this paper uses the non-linear projective algorithm for noise reduction. First, the weak negative pressure wave signal series would be reconstructed using delay coordinates, in the high dimensional phase space, the background signal, the negative pressure wave signal and the noise signal are separated into different sub-spaces. Through the reconstruction of sub-spaces, the weak pressure wave signal can be isolated from the background signal as well as the random noise component reduced.


Sign in / Sign up

Export Citation Format

Share Document