An Intelligence Fault Diagnosis Approach for Rolling Bearings Based on Non-local Convolutional Neural Network

Author(s):  
Haoran Han ◽  
Huan Wang ◽  
Zhiliang Liu ◽  
Yijia Hao
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2458 ◽  
Author(s):  
Zhuozheng Wang ◽  
Yingjie Dong ◽  
Wei Liu ◽  
Zhuo Ma

The safety of an Internet Data Center (IDC) is directly determined by the reliability and stability of its chiller system. Thus, combined with deep learning technology, an innovative hybrid fault diagnosis approach (1D-CNN_GRU) based on the time-series sequences is proposed in this study for the chiller system using 1-Dimensional Convolutional Neural Network (1D-CNN) and Gated Recurrent Unit (GRU). Firstly, 1D-CNN is applied to automatically extract the local abstract features of the sensor sequence data. Secondly, GRU with long and short term memory characteristics is applied to capture the global features, as well as the dynamic information of the sequence. Moreover, batch normalization and dropout are introduced to accelerate network training and address the overfitting issue. The effectiveness and reliability of the proposed hybrid algorithm are assessed on the RP-1043 dataset; based on the experimental results, 1D-CNN_GRU displays the best performance compared with the other state-of-the-art algorithms. Further, the experimental results reveal that 1D-CNN_GRU has a superior identification rate for minor faults.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6754
Author(s):  
Hongtao Tang ◽  
Shengbo Gao ◽  
Lei Wang ◽  
Xixing Li ◽  
Bing Li ◽  
...  

Rolling bearings are widely used in industrial manufacturing, and ensuring their stable and effective fault detection is a core requirement in the manufacturing process. However, it is a great challenge to achieve a highly accurate rolling bearing fault diagnosis because of the severe imbalance and distribution differences in fault data due to weak early fault features and interference from environmental noise. An intelligent fault diagnosis strategy for rolling bearings based on grayscale image transformation, a generative adversative network, and a convolutional neural network was proposed to solve this problem. First, the original vibration signal is converted into a grayscale image. Then more training samples are generated using GANs to solve severe imbalance and distribution differences in fault data. Finally, the rolling bearing condition detection and fault identification are carried out by using SECNN. The availability of the method is substantiated by experiments on datasets with different data imbalance ratios. In addition, the superiority of this diagnosis strategy is verified by comparing it with other mainstream intelligent diagnosis techniques. The experimental result demonstrates that this strategy can reach more than 99.6% recognition accuracy even under substantial environmental noise interference or changing working conditions and has good stability in the presence of a severe imbalance in fault data.


2020 ◽  
Vol 10 (12) ◽  
pp. 4303
Author(s):  
Yang Shao ◽  
Xianfeng Yuan ◽  
Chengjin Zhang ◽  
Yong Song ◽  
Qingyang Xu

Deep learning based intelligent fault diagnosis methods have become a research hotspot in the fields of fault diagnosis and the health management of rolling bearings in recent years. To effectively identify incipient faults in rotating machinery, this paper proposes a novel hybrid intelligent fault diagnosis framework based on a convolutional neural network and support vector machine (SVM). First, an improved one-dimensional convolutional neural network (1DCNN) was adopted to extract fault features, and the state information and intrinsic properties of the raw vibration signals were mined. Second, the extracted features were used to train the SVM, which was applied to classify the fault category. The proposed hybrid framework combined the excellent classification performance of the SVM for small samples and the strong feature-learning ability of CNN network. In order to tune the parameters of the SVM, an improved novel particle swarm optimization algorithm (INPSO) which combined the Tent map and Lévy flight strategy was proposed. Numerical experimental results indicated that the proposed PSO variant had a better performance in searching accuracy and convergence speed. At last, multiple groups of rolling bearing fault diagnosis experiments were carried out and experimental results showed that, with the proposed 1DCNN-INPSO-SVM model, the hybrid framework was capable of diagnosing with high precision for rolling bearings and superior to some traditional fault diagnosis methods.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989721 ◽  
Author(s):  
Changchang Che ◽  
Huawei Wang ◽  
Qiang Fu ◽  
Xiaomei Ni

Rolling bearings are the vital components of rotary machines. The collected data of rolling bearing have strong noise interference, massive unlabeled samples, and different fault features. Thus, a deep transfer learning method is proposed for rolling bearings fault diagnosis under variable operating conditions. To obtain robust feature representation, the denoising autoencoder is used to denoise and reduce dimension of unlabeled rolling bearing signals. For those unlabeled target domain signals, a feature matching method based on multi-kernel maximum mean discrepancies between source domain and target domain is adopted to get enough labeled target domain samples. Then, these rolling bearing signals are converted to multi-dimensional graph samples and fed into a convolutional neural network model for fault diagnosis. To improve the generalization of convolutional neural network under variable operating conditions, we combine model-based transfer learning with feature-based transfer learning to initialize and optimize the convolutional neural network parameters. The effectiveness of the proposed method is validated through several comparative experiments of Case Western Reserve University data. The results demonstrate that the proposed method can learn features adaptively from noisy data and increase the accuracy rate by 2%–8% comparing with other models.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095139
Author(s):  
Shenglong Xie ◽  
Guoying Ren ◽  
Junjiang Zhu

As one of the key parts of rotary machine, the fault diagnosis and running condition monitoring of rolling bearings are of great importance for normal working and safe production of rotary machine. However, the traditional diagnosis approaches merely count on artificial feature extraction and domain expertise. Meanwhile, the existing convolutional neural networks (CNNs) have the problem of low fault recognition rates. This paper proposes a novel convolutional neural network with one-dimensional structure (ODCNN) for the automatical fault diagnosis of rolling bearings, which adopts six sets of convolutional and max-pooling layers to extract signal features and applies a flattening convolutional layer followed by two fully-connected layers for feature classification. The architectures of one-dimensional LeNet-5, AlexNet, and the proposed ODCNN are illustrated in detail, followed by the obtaining of training and testing samples, which is pre-processed by overlapping the vibration signals of rolling bearings. Finally, the classification experiment is carried out. The experimental results show that the ODCNN has higher fault diagnosis rates and can achieve high accuracy with load variant. Additionally, the extracted features of three CNNs are visualized, which illustrate that the new CNN has a better classification capacity.


Sign in / Sign up

Export Citation Format

Share Document