scholarly journals Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings

2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095139
Author(s):  
Shenglong Xie ◽  
Guoying Ren ◽  
Junjiang Zhu

As one of the key parts of rotary machine, the fault diagnosis and running condition monitoring of rolling bearings are of great importance for normal working and safe production of rotary machine. However, the traditional diagnosis approaches merely count on artificial feature extraction and domain expertise. Meanwhile, the existing convolutional neural networks (CNNs) have the problem of low fault recognition rates. This paper proposes a novel convolutional neural network with one-dimensional structure (ODCNN) for the automatical fault diagnosis of rolling bearings, which adopts six sets of convolutional and max-pooling layers to extract signal features and applies a flattening convolutional layer followed by two fully-connected layers for feature classification. The architectures of one-dimensional LeNet-5, AlexNet, and the proposed ODCNN are illustrated in detail, followed by the obtaining of training and testing samples, which is pre-processed by overlapping the vibration signals of rolling bearings. Finally, the classification experiment is carried out. The experimental results show that the ODCNN has higher fault diagnosis rates and can achieve high accuracy with load variant. Additionally, the extracted features of three CNNs are visualized, which illustrate that the new CNN has a better classification capacity.

2020 ◽  
Vol 10 (12) ◽  
pp. 4303
Author(s):  
Yang Shao ◽  
Xianfeng Yuan ◽  
Chengjin Zhang ◽  
Yong Song ◽  
Qingyang Xu

Deep learning based intelligent fault diagnosis methods have become a research hotspot in the fields of fault diagnosis and the health management of rolling bearings in recent years. To effectively identify incipient faults in rotating machinery, this paper proposes a novel hybrid intelligent fault diagnosis framework based on a convolutional neural network and support vector machine (SVM). First, an improved one-dimensional convolutional neural network (1DCNN) was adopted to extract fault features, and the state information and intrinsic properties of the raw vibration signals were mined. Second, the extracted features were used to train the SVM, which was applied to classify the fault category. The proposed hybrid framework combined the excellent classification performance of the SVM for small samples and the strong feature-learning ability of CNN network. In order to tune the parameters of the SVM, an improved novel particle swarm optimization algorithm (INPSO) which combined the Tent map and Lévy flight strategy was proposed. Numerical experimental results indicated that the proposed PSO variant had a better performance in searching accuracy and convergence speed. At last, multiple groups of rolling bearing fault diagnosis experiments were carried out and experimental results showed that, with the proposed 1DCNN-INPSO-SVM model, the hybrid framework was capable of diagnosing with high precision for rolling bearings and superior to some traditional fault diagnosis methods.


Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 122 ◽  
Author(s):  
Xianzhong Jian ◽  
Wenlong Li ◽  
Xuguang Guo ◽  
Ruzhi Wang

Deep learning has been an important topic in fault diagnosis of motor bearings, which can avoid the need for extensive domain expertise and cumbersome artificial feature extraction. However, existing neural networks have low fault recognition rates and low adaptability under variable load conditions. In order to solve these problems, we propose a one-dimensional fusion neural network (OFNN), which combines Adaptive one-dimensional Convolution Neural Networks with Wide Kernel (ACNN-W) and Dempster-Shafer (D-S) evidence theory. Firstly, the original vibration time-domain signals of a motor bearing acquired by two sensors are resampled. Then, four frameworks of ACNN-W optimized by RMSprop are utilized to learn features adaptively and pre-classify them with Softmax classifiers. Finally, the D-S evidence theory is used to comprehensively determine the class vector output by the Softmax classifiers to achieve fault detection of the bearing. The proposed method adapts to different load conditions by incorporating complementary or conflicting evidences from different sensors through experiments on the Case Western Reserve University (CWRU) motor bearing database. Experimental results show that the proposed method can effectively enhance the cross-domain adaptive ability of the model and has a better diagnostic accuracy than other existing experimental methods.


2021 ◽  
Vol 1207 (1) ◽  
pp. 012003
Author(s):  
Xukun Hou ◽  
Pengjie Hu ◽  
Wenliao Du ◽  
Xiaoyun Gong ◽  
Hongchao Wang ◽  
...  

Abstract Aiming at the typical non-stationary and nonlinear characteristics of rolling bearing vibration signals, a multi-scale convolutional neural network method for bearing fault diagnosis based on wavelet transform and one-dimensional convolutional neural network is proposed. First, the signal is decomposed into multi scale components with wavelet transform, and then each scale component is reconstructed. The reconstructed signal is subjected to the Fourier transform to obtain the frequency spectrum representation, which is used as the input of the one-dimensional convolutional neural network. Finally, one-dimensional convolution neural network is used to learn the features of the input data and recognize the bearing fault. The performance of the model is verified by using data sets of rolling bearing. The results show that this method can intelligent feature extraction and obtain 99.94% diagnostic accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6754
Author(s):  
Hongtao Tang ◽  
Shengbo Gao ◽  
Lei Wang ◽  
Xixing Li ◽  
Bing Li ◽  
...  

Rolling bearings are widely used in industrial manufacturing, and ensuring their stable and effective fault detection is a core requirement in the manufacturing process. However, it is a great challenge to achieve a highly accurate rolling bearing fault diagnosis because of the severe imbalance and distribution differences in fault data due to weak early fault features and interference from environmental noise. An intelligent fault diagnosis strategy for rolling bearings based on grayscale image transformation, a generative adversative network, and a convolutional neural network was proposed to solve this problem. First, the original vibration signal is converted into a grayscale image. Then more training samples are generated using GANs to solve severe imbalance and distribution differences in fault data. Finally, the rolling bearing condition detection and fault identification are carried out by using SECNN. The availability of the method is substantiated by experiments on datasets with different data imbalance ratios. In addition, the superiority of this diagnosis strategy is verified by comparing it with other mainstream intelligent diagnosis techniques. The experimental result demonstrates that this strategy can reach more than 99.6% recognition accuracy even under substantial environmental noise interference or changing working conditions and has good stability in the presence of a severe imbalance in fault data.


Sign in / Sign up

Export Citation Format

Share Document