Optimal Dispatch and Techno-economic Evaluation of Mixed AC and DC Distribution Networks with High Penetration of Photovoltaic Panels

Author(s):  
Yuhao Peng ◽  
Shuang Gao ◽  
Bin Xu
Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4621 ◽  
Author(s):  
Yi Liu ◽  
Zhanqing Yu ◽  
Haibo Li ◽  
Rong Zeng

DC distribution networks are operationally economical from the perspective of renewable energy penetration due to the reduction of power loss from the simplified power conversion structure. However, the initial investment cost of a DC network is high because DC technology is in the early stage of development. So, selecting AC or DC technology becomes an important issue in the planning stage of a distribution network, where a comprehensive quantitative economic comparison between AC and DC distribution networks is necessary. To compare the economy between AC and DC distribution networks with high penetration of a renewable energy scenario, this paper introduces a comprehensive economic evaluation method. In this study, first, typical system models for AC and DC distribution networks were proposed as the foundation of the research. Then, a levelized cost of energy (LCOE)-indicator-based comprehensive economic evaluation model was established, where the operation cost was classified into power loss cost, reliability loss cost, and operational cost. A time sequential simulation model was applied to calculate the power loss. The simulation results showed that a DC distribution network has higher initial investment, operation, and maintenance costs than an AC distribution network, but the loss cost is far lower than an AC distribution network. A sensitivity analysis showed that the equipment cost and proportion of renewable energy are two of the most important factors that affect the economics of DC distribution networks at present.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jie Liu ◽  
Xingquan Ji ◽  
Kejun Li ◽  
Kaiyuan Zhang

A multi-time scale optimal dispatch model based on the scenario method and model predictive control (MPC) in the AC/DC distribution network is established due to the uncertainty of wind and load. A Markov chain dynamic scenario method is proposed, which generates scenarios by characterizing the forecast error via empirical distribution. Considering the time correlation of the forecast error, Markov chain is adopted in the Markov chain dynamic method to simulate the uncertainty and variability in wind and load with time. A multi-time scale optimal dispatch strategy based on MPC is proposed. The operation scheduling of operation units is solved in day-ahead and intraday optimal dispatch by minimizing the expected value of total cost in each scenario. In the real-time optimal dispatch, the stability and robustness of system operation are considered. MPC is adopted in the real-time optimal dispatch, taking the intraday scheduling as reference and using the roll optimization method to compute real-time optimal dispatch scheduling to smooth the output power. The simulation results in a 50-node system with uncontrollable distributed energy demonstrate that the proposed model and strategy can effectively eliminate fluctuations in wind and load in AC/DC distribution networks.


Author(s):  
Qing Fang ◽  
Wei Li ◽  
Ahmed Abdolkhalig ◽  
Lu Yin ◽  
Yang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document