Verification Modeling of Magnetic Field Influence on Power Transmission Line Losses

Author(s):  
Roman A. Nechitaev ◽  
Nikolay L. Novikov ◽  
Lyudmila I. Tolstobrova
2017 ◽  
Vol 66 (3) ◽  
pp. 595-605 ◽  
Author(s):  
Ramūnas Deltuva ◽  
Robertas Lukočius

AbstractIn Lithuanian and Polish electric power supply systems, the power transmission lines of 400 kV voltage represent one of the most potential sources of electric and magnetic fields generation. The 400 kV double-circuit overhead power transmission line and its surrounding environment were herby described and simulated through Finite Element Method usingCOMSOL Multiphysicsoftware package. This study includes magnetic and electric field calculations. The study shows that the values of magnetic field strength and electric field strength present in the vicinity of a 400 kV overhead power transmission line tend to exceed limit values established in the Normative. Measurements are suggested to be taken for the purpose of finding maximum values of magnetic and electric field strength. To reduce these values, it is recommended to increase the height of supports, and restrict human personal and economic activities.


2020 ◽  
Vol 10 (9) ◽  
pp. 3266 ◽  
Author(s):  
Ramūnas Deltuva ◽  
Robertas Lukočius

A high-voltage AC double-circuit 400 kV overhead power transmission line runs from the city of Elk (Poland) to the city of Alytus (Lithuania). This international 400 kV power transmission line is potentially one of the strongest magnetic field-generating sources in the area. This 400 kV voltage double-circuit overhead transmission line and its surroundings were analyzed using the mathematical analytical methods of superposition and reflections. This research paper includes the calculation of the numerical values of the magnetic field and its distribution. The research showed that the values of the magnetic field strength near the international 400 kV power transmission line exceed the threshold values permitted by relevant standards. This overhead power line is connected to the general (50 Hz) power system and generates a highly intense magnetic field. It is suggested that experimental trials should be undertaken in order to determine the maximum values of the magnetic field strength. For the purpose of mitigating these values, it is suggested that the height of the support bars should be increased or that any individual and commercial activities near the object under investigation should be restricted.


Sign in / Sign up

Export Citation Format

Share Document