Author(s):  
Qingchun Luo ◽  
Yantao zhou ◽  
Yihong Qi ◽  
Pu Ye ◽  
Francesco de Paulis ◽  
...  

The testing requirements of the active phased array antennas are very different from those of traditional passive antennas, due to its beam steering capability. Usually, each beam profile of the active phased array needs a separate radiation pattern test, which makes the overall testing time extremely long. Thus the traditional antenna test method can no longer meet the efficiency and cost requirements of new active phased array antennas test. In this paper, a fast test method tailored for phased array antennas is proposed that offers significantly reduced testing time at the expense of slight sacrifice of the accuracy. Using the simulated element pattern in array and ideal port excitation, the beam profile in any direction can be predicted by testing only a certain beam profile. Through theoretical derivation and experiments, the effectiveness of the method is verified, and the testing efficiency of the phased array antenna is demonstrated to be improved by ten times or even more.


1987 ◽  
Author(s):  
M. G. Parent ◽  
L. Goldberg ◽  
P. D. Stilwell, Jr.

Author(s):  
Tarek Sallam ◽  
Ahmed M. Attiya

Abstract Achieving robust and fast two-dimensional adaptive beamforming of phased array antennas is a challenging problem due to its high-computational complexity. To address this problem, a deep-learning-based beamforming method is presented in this paper. In particular, the optimum weight vector is computed by modeling the problem as a convolutional neural network (CNN), which is trained with I/O pairs obtained from the optimum Wiener solution. In order to exhibit the robustness of the new technique, it is applied on an 8 × 8 phased array antenna and compared with a shallow (non-deep) neural network namely, radial basis function neural network. The results reveal that the CNN leads to nearly optimal Wiener weights even in the presence of array imperfections.


Author(s):  
Aparna B. Barbadekar ◽  
Pradeep M. Patil

Abstract The paper proposes a system consisting of novel programmable system on chip (PSoC)-controlled phase shifters which in turn guides the beam of an antenna array attached to it. Four antennae forming an array receive individual inputs from the programmable phase shifters (IC 2484). The input to the PSoC-based phase shifter is provided from an optimized 1:4 Wilkinson power divider. The antenna consists of an inverted L-shaped dipole on the front and two mirrored inverted L-shaped dipoles mounted on a rectangular conductive structure on the back which resonates in the ISM/Wi-Fi band (2.40–2.48 GHz). The power divider is designed to provide the feed to the phase shifter using a beamforming network while ensuring good isolation among the ports. The power divider has measured S11, S21, S31, S41, and S51 to be −14, −6.25, −6.31, −6.28, and −6.31 dB, respectively at a frequency of 2.45 GHz. The ingenious controller is designed in-house using a PSoC microcontroller to regulate the control voltage of individual phase shifter IC and generate progressive phase shifts. To validate the calibration of the in-house designed control circuit, the phased array is simulated using $s_p^2$ touchstone file of IC 2484. This designed control circuit exhibits low insertion loss close to −8.5 dB, voltage standing wave ratio of 1.58:1, and reflection coefficient (S11) is −14.36 dB at 2.45 GHz. Low insertion loss variations confirm that the phased-array antenna gives equal amplitude and phase. The beamforming radiation patterns for different scan angles (30, 60, and 90°) for experimental and simulated phased-array antenna are matched accurately showing the accuracy of the control circuit designed. The average experimental and simulated gain is 13.03 and 13.48 dBi respectively. The in-house designed controller overcomes the primary limitations associated with the present electromechanical phased array such as cost weight, size, power consumption, and complexity in design which limits the use of a phased array to military applications only. The current study with novel design and enhanced performance makes the system worthy of the practical use of phased-array antennas for common society at large.


Sign in / Sign up

Export Citation Format

Share Document