power divider
Recently Published Documents


TOTAL DOCUMENTS

2492
(FIVE YEARS 598)

H-INDEX

48
(FIVE YEARS 8)

Author(s):  
Wang Chen ◽  
Zhuowei Zhang ◽  
Chengjia Huang ◽  
Yuan Chen ◽  
Mengya Liu ◽  
...  
Keyword(s):  

Author(s):  
Tharani Duraisamy ◽  
Selvajyothi Kamakshy ◽  
Karthikeyan Sholampettai Subramanian ◽  
Rusan Kumar Barik ◽  
Qingsha S. Cheng

Abstract This paper presents a miniaturized tri- and quad-band power divider (PD)based on substrate integrated waveguide (SIW). By adopting different types of modified circular complementary split-ring resonators on the top surface of SIW, multiple passbands are generated propagating below the SIW cut-off frequency. The working principle is based on evanescent mode propagation that decreases the operating frequency of the PD and helps in the miniaturization of the proposed structure. The operating frequency of the proposed PD can be individually controlled by changing the dimensions of the resonator. To verify the proposed concept, a tri-band and a quad-band PD exhibiting 3 dB equal power division at 2.41/3.46/4.65 GHz and 2.42/3.78/4.74/5.8 GHz are designed using the full-wave simulator, validated through circuit model, fabricated and experimentally verified. The measured results agree well with the simulations. The proposed PDs have good performance in terms of reasonable insertion loss, isolation, minimum amplitude and phase imbalance, smaller footprint, easy fabrication and integration. The size of the fabricated prototype is 18.3 mm × 8.4 mm, which corresponds to 0.205λ g × 0.094λ g , λ g being the guided wavelength at the first operating frequency.


Author(s):  
Aniello Franzese ◽  
Renato Negra ◽  
Andrea Malignaggi
Keyword(s):  

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yousra Ghazaoui ◽  
Mohammed EL Ghzaoui ◽  
Sudipta Das ◽  
BTP Madhav ◽  
Ali el Alami

Purpose This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented. Design/methodology/approach The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2. Findings The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz. Originality/value The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.


2021 ◽  
Author(s):  
Chaochao Yang ◽  
Jin Meng ◽  
Haitao Wang ◽  
Danni Zhu ◽  
Yuzhang Yuan ◽  
...  

Abstract The radial transit time oscillator (RTTO) has attracted much attention because of its high power capacity and pure mode of output microwave. To make the high power microwave (HPM) source devices more compact and to enable it to measure the output microwave mode quantitatively, this paper proposed a compact Ku-band RTTO with the power divider extraction structure (PDES). The radial decreasing magnetic field is applied to decreasing the mass of excitation system. Compared the conventional uniform solenoids, it can reduce the mass by about 30%. In the coaxial output waveguide, the PDES is used instead of the traditional support rods connecting the inner and outer conductors so as to convert TEM mode into TE10 mode efficiently. This structure can not only help shorten the axial dimension of the device, but also make it possible to measure the output microwave mode more accurately online. In particle-in-cell (PIC) simulation, the proposed Ku-band RTTO can output HPMs with the power of 3.05 GW and the frequency of 14.36 GHz, and the working efficiency is 40.3%. The maximum radial electric field intensity in the extraction cavity is 0.92 MV/cm, and the maximum electric field intensity in the PDES is 0.52 MV/cm, both of which are lower than the radio frequency (RF) breakdown threshold of metal materials.


Sign in / Sign up

Export Citation Format

Share Document