A single-layer waveguide slot array antenna using diaphragms for easy manufacture and high performance

Author(s):  
Ji-Hwan Hwang ◽  
Yisok Oh
2005 ◽  
Vol 41 (16) ◽  
pp. 886 ◽  
Author(s):  
Y. Oh ◽  
J.-H. Hwang ◽  
J. Choi

2006 ◽  
Vol 3 (2) ◽  
pp. 29-33
Author(s):  
Toshinori Kondo ◽  
Jiro Hirokawa ◽  
Kimio Sakurai ◽  
Makoto Ando

2012 ◽  
Vol E95.C (10) ◽  
pp. 1635-1642 ◽  
Author(s):  
Yuanfeng SHE ◽  
Jiro HIROKAWA ◽  
Makoto ANDO ◽  
Daisuke HANATANI ◽  
Masahiro FUJIMOTO

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1311
Author(s):  
Giovanni Andrea Casula ◽  
Giuseppe Mazzarella ◽  
Giorgio Montisci ◽  
Giacomo Muntoni

Planar waveguide slot arrays (WSAs) have been used since 1940 and are currently used as performing antennas for high frequencies, especially in applications such as communication and RADAR systems. We present in this work a review of the most typical waveguide slot array configurations proposed in the literature, describing their main limitations and drawbacks along with possible effective countermeasures. Our attention has been focused mainly on the improved available design techniques to obtain high performance WSAs. In particular, the addressed topics have been reported in the following. Partially filled WSAs, or WSAs covered with single or multilayer dielectric slabs, are discussed. The most prominent second-order effects in the planar array feeding network are introduced and accurately modeled. The attention is focused on the T-junction feeding the array, on the effect of interaction between each slot coupler of the feeding network and the radiating slots nearest to this coupler, and on the waveguide bends. All these effects can critically increase the first sidelobes if compared to the ideal case, causing a sensible worsening in the performance of the array.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


Sign in / Sign up

Export Citation Format

Share Document