An Elliptical Slot Loaded Planar Monopole Antenna with Tapered Feed Line and Spline Cut Ground Plane for Super-Wideband Applications

Author(s):  
Agus D. Prasetyo ◽  
Budi Syihabuddin ◽  
Ahmad T. Hanuranto
2019 ◽  
Vol 28 (13) ◽  
pp. 1950220
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

In this paper, we present the design of a compact planar monopole antenna for dual-band wireless communication applications. The proposed antenna is based on a planar structure composed by a CPW feed line and a rectangular ring with a vertical strip. The designed antenna has a small overall size of [Formula: see text][Formula: see text]mm3. Dual-band characteristics can be obtained by adjusting the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the dimensions of the rectangular ring and the length of the vertical strip. A prototype of the proposed antenna which was fabricated and measured to validate the design reveals that there is a good agreement between the simulation and the experiment. The measured result shows that the antenna has the impedance bandwidths of 610[Formula: see text]MHz (2–2.61[Formula: see text]GHz) and 2600[Formula: see text]MHz (3.18–5.78[Formula: see text]GHz) with a reflection coefficient less than [Formula: see text]10[Formula: see text]dB covering all the LTE 2300, 2.4-GHz band, WiMAX, C-band and HiperLAN/2 applications. In addition, the dual-band monopole antenna exhibits almost omnidirectional radiation patterns and an appreciable gain over the operating frequency bands. Details of the proposed antenna design and both simulated and experimental results are analyzed and discussed.


2004 ◽  
Vol 43 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Saou-Wen Su ◽  
Kin-Lu Wong ◽  
Yuan-Tung Cheng ◽  
Wen-Shyang Chen

Author(s):  
Hyun-Chul Kim ◽  
Jin-Woo Jung ◽  
Hyeon-Jin Lee ◽  
Yeong-Seog Lim

2005 ◽  
Vol 46 (6) ◽  
pp. 563-566 ◽  
Author(s):  
Wang-Sang Lee ◽  
Ki-Jin Kim ◽  
Dong-Zo Kim ◽  
Jong-Won Yu

2007 ◽  
Vol 21 (15) ◽  
pp. 2229-2239 ◽  
Author(s):  
G.-M. Zhang ◽  
J.-S. Hong ◽  
B.-Z. Wang ◽  
Q.-Y. Qin ◽  
B. He ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050032
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Divitha Seetharamdoo ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.


Sign in / Sign up

Export Citation Format

Share Document