A Compact CPW-Fed Dual-Band Planar Monopole Antenna for LTE/2.4-GHz/WiMAX, C-Band and HiperLAN/2 Applications

2019 ◽  
Vol 28 (13) ◽  
pp. 1950220
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

In this paper, we present the design of a compact planar monopole antenna for dual-band wireless communication applications. The proposed antenna is based on a planar structure composed by a CPW feed line and a rectangular ring with a vertical strip. The designed antenna has a small overall size of [Formula: see text][Formula: see text]mm3. Dual-band characteristics can be obtained by adjusting the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the dimensions of the rectangular ring and the length of the vertical strip. A prototype of the proposed antenna which was fabricated and measured to validate the design reveals that there is a good agreement between the simulation and the experiment. The measured result shows that the antenna has the impedance bandwidths of 610[Formula: see text]MHz (2–2.61[Formula: see text]GHz) and 2600[Formula: see text]MHz (3.18–5.78[Formula: see text]GHz) with a reflection coefficient less than [Formula: see text]10[Formula: see text]dB covering all the LTE 2300, 2.4-GHz band, WiMAX, C-band and HiperLAN/2 applications. In addition, the dual-band monopole antenna exhibits almost omnidirectional radiation patterns and an appreciable gain over the operating frequency bands. Details of the proposed antenna design and both simulated and experimental results are analyzed and discussed.

2007 ◽  
Vol 21 (15) ◽  
pp. 2229-2239 ◽  
Author(s):  
G.-M. Zhang ◽  
J.-S. Hong ◽  
B.-Z. Wang ◽  
Q.-Y. Qin ◽  
B. He ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ayman S. Al-Zayed ◽  
V. A. Shameena

A compact planar microstrip-fed monopole antenna designed for dual-band operation is proposed for WLAN applications. The antenna is composed of a rectangular strip monopole in addition to an inverted-L parasitic element that is connected to the truncated ground plane of the microstrip feed. Besides exciting an additional band of operation, the parasitic element also improves the bandwidth of the band excited by the strip monopole. Several simulated parametric studies are conducted to investigate the effects of each geometrical parameter on the behavior of the antenna. Experimental and simulation results demonstrate that the proposed antenna covers the 2.4 and 5.8 GHz bands utilized in WLAN. In both bands, the proposed antenna exhibits good impedance match, moderate gain (approximately 2 dBi), and sustainable omnidirectional-like radiation patterns in both principal planes. An equivalent circuit model of the antenna is also developed.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
P. C. Bybi ◽  
B. Jitha ◽  
P. Mohanan ◽  
C. K. Aanandan

A wideband, compact planar monopole antenna having a 2 : 1 VSWR bandwidth of 98% (1.68 GHz–4.9 GHz) is presented. The omnidirectional radiation pattern with moderate gain and linear polarization in the entire band makes the antenna an excellent candidate for new generation mobile applications. Details of the antenna design and a comparison of simulated and measured results are presented and discussed.


Author(s):  
Ansal Kalikuzhackal Abbas ◽  
Thangavelu Shanmuganatham

<p>A compact planar antenna for dual band applications is presented in this paper. The proposed antenna has Dumbbell shaped defect on the ground plane and it is fed by Asymmetric coplanar strip(ACS). The antenna is printed on FR4 epoxy substrate and it has a compact size of 21× 19 × 1.6 mm<sup>3</sup>. The antenna exhibits a dual band of resonances at 3.4GHz and 5.5 GHz which is used for WiMAX/WLAN. The planar design, simple feeding techniques and compactness make it easy for the integration of the antenna into circuit boards. Details of the antenna design and simulated results are presented and discussed. Simulation tool, based on the method of moments (Mentor Graphics IE3D version 15.10) has been used to analyze and optimize the antenna. Various features such as compactness, simple con-figuration and low fabrication cost make the antenna is suitable for dual band wireless applications.</p>


A circular monopole antenna with coplanar waveguide feeding is designed for wideband applications. Different electromagnetic bandgap structures are placed beneath the antenna ground plane to improve the gain and the radiation efficiency. The depicted model occupies the dimension of 50X50X1.60 mm on FR4 substrate with dielectric constant of 4.3. Aerial operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.10 and 10.20 GHz respectively. The final novel antenna design provides good correlation with simulation results.


2004 ◽  
Vol 43 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Saou-Wen Su ◽  
Kin-Lu Wong ◽  
Yuan-Tung Cheng ◽  
Wen-Shyang Chen

Sign in / Sign up

Export Citation Format

Share Document