Diversity to enhance autonomic computing self-protection

Author(s):  
M. Jarrett ◽  
R. Seviora
Author(s):  
Haibin Zhu

Autonomic Computing is an emerging computing paradigm used to create computer systems capable of self-management in order to overcome the rapidly growing complexity of computing systems management. To possess self-* properties, there must be mechanisms to support self-awareness, that is an autonomic system should be able to perceive the abnormality of its components. After abnormality is checked, processes of self-healing, self-configuration, self-optimization, and self-protection must be completed to guarantee the system works correctly and continuously. In role-based collaboration (RBC), roles are the major media for interaction, coordination, and collaboration. A role can be used to check if a player behaves well or not. This paper investigates the possibility of using roles and their related mechanisms to diagnose the behavior of agents, and facilitate self-* properties of a system.


2020 ◽  
Vol 10 (7) ◽  
pp. 2495
Author(s):  
Mariano Vargas-Santiago ◽  
Luis Morales-Rosales ◽  
Raul Monroy ◽  
Saul Pomares-Hernandez ◽  
Khalil Drira

Companies, organizations and individuals use Web services to build complex business functionalities. Web services must operate properly in the unreliable Internet infrastructure even in the presence of failures. To increase system dependability, organizations, including service providers, adapt their systems to the autonomic computing paradigm. Strategies can vary from having one to all (S-CHOP, self-configuration, self-healing, self-optimization and self-protection) features. Regarding self-healing, an almost identical tool is communication-induced checkpointing (CiC), a checkpoint contains the state (heap, registers, stack, kernel state) for each process in the system. CiC is based on quasi-synchronous checkpointing where processes take checkpoints relying of control information piggybacked inside application messages; however, avoiding dangerous patterns such as Z-paths and Z-cycles; in such a regard the system takes forced checkpoints and avoids inconsistent states. CiC, unlike other tools, does not incur system performance, our proposal does not incur high overhead (as results show), and it has the advantage of being scalable. As we have shown in a previous work, CiC can be used to address dependability problems when dealing with Web services, as CiC mechanism work in a distributed and efficient manner. Therefore, in this work we propose an adaptable and dynamic generation of checkpoints to support fault tolerance. We present an alternative considering Quality of Service (QoS) criteria, and the different impact applications have on it. We propose taking checkpoints dynamically in case of failure or QoS degradation. Experimental results show that our approach has significantly reduced the generation of checkpoints of various well-known tools in the literature.


Author(s):  
Haibin Zhu

Autonomic Computing is an emerging computing paradigm used to create computer systems capable of self-management in order to overcome the rapidly growing complexity of computing systems management. To possess self-* properties, there must be mechanisms to support self-awareness, that is an autonomic system should be able to perceive the abnormality of its components. After abnormality is checked, processes of self-healing, self-configuration, self-optimization, and self-protection must be completed to guarantee the system works correctly and continuously. In role-based collaboration (RBC), roles are the major media for interaction, coordination, and collaboration. A role can be used to check if a player behaves well or not. This paper investigates the possibility of using roles and their related mechanisms to diagnose the behavior of agents, and facilitate self-* properties of a system.


Author(s):  
David C. Byrne ◽  
Christa L. Themann ◽  
Deanna K. Meinke ◽  
Thais C. Morata ◽  
Mark R. Stephenson

An audiologist should be the principal provider and advocate for all hearing loss prevention activities. Many audiologists equate hearing loss prevention with industrial audiology and occupational hearing conservation programs. However, an audiologist’s involvement in hearing loss prevention should not be confined to that one particular practice setting. In addition to supervising occupational programs, audiologists are uniquely qualified to raise awareness of hearing risks, organize public health campaigns, promote healthy hearing, implement intervention programs, and monitor outcomes. For example, clinical audiologists can show clients how to use inexpensive sound level meters, noise dosimeters, or phone apps to measure noise levels, and recommend appropriate hearing protection. Audiologists should identify community events that may involve hazardous exposures and propose strategies to minimize risks to hearing. Audiologists can help shape the knowledge, beliefs, motivations, attitudes, and behaviors of individuals toward self-protection. An audiologist has the education, tools, opportunity, and strategic position to facilitate or promote hearing loss surveillance and prevention services and activities. This article highlights real-world examples of the various roles and substantial contributions audiologists can make toward hearing loss prevention goals.


1996 ◽  
Vol 38 (2) ◽  
pp. 217-220
Author(s):  
Thomas Gabor
Keyword(s):  

1996 ◽  
Vol 38 (4) ◽  
pp. 485-488
Author(s):  
Gary Mauser
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document