ICA-based positive semidefinite matrix templates for eye-blink artifact removal from EEG signal with single-electrode

Author(s):  
Suguru Kanoga ◽  
Yasue Mitsukura
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


2020 ◽  
Vol 8 (1) ◽  
pp. 14-16
Author(s):  
Lon Mitchell

AbstractWe prove that an n-by-n complex positive semidefinite matrix of rank r whose graph is connected, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least n + r − 1.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Li Wang

The continuous coupled algebraic Riccati equation (CCARE) has wide applications in control theory and linear systems. In this paper, by a constructed positive semidefinite matrix, matrix inequalities, and matrix eigenvalue inequalities, we propose a new two-parameter-type upper solution bound of the CCARE. Next, we present an iterative algorithm for finding the tighter upper solution bound of CCARE, prove its boundedness, and analyse its monotonicity and convergence. Finally, corresponding numerical examples are given to illustrate the superiority and effectiveness of the derived results.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Fangfang Xu ◽  
Peng Pan

Positive semidefinite matrix completion (PSDMC) aims to recover positive semidefinite and low-rank matrices from a subset of entries of a matrix. It is widely applicable in many fields, such as statistic analysis and system control. This task can be conducted by solving the nuclear norm regularized linear least squares model with positive semidefinite constraints. We apply the widely used alternating direction method of multipliers to solve the model and get a novel algorithm. The applicability and efficiency of the new algorithm are demonstrated in numerical experiments. Recovery results show that our algorithm is helpful.


Sign in / Sign up

Export Citation Format

Share Document