Microwave nondestructive testing for sensor applications using free-space microwave measurement system in the frequency range 8 - 40 GHz

Author(s):  
D.K. Ghodgaonkar
2005 ◽  
Vol 2 (2) ◽  
pp. 17
Author(s):  
Norhayati Hamzah ◽  
Deepak Kumar Ghodgaonkar ◽  
Kamal Faizin Che Kasim ◽  
Zaiki Awang

Microwave nondestructive testing (MNDT) techniques are applied to evaluate quality of anti-corrosive protective coatings and paints on metal surfaces. A tree-space microwave measurement (FSMM) system is used for MNDT of protective coatings. The FSMM system consists of transmit and receive spot-focusing horn lens antennas, a vector network analyzer, mode transitions and a computer. Diffraction effects at the edges of the sample are minimized by using spot-focusing horn lens antennas. Errors due to multiple reflections between antennas are corrected by using free-space LRL (line, reflect, line) calibration technique. We have measured complex reflection coefficient of polyurethane based paint which is coated on brass plates.


2021 ◽  
Vol 21 (1) ◽  
pp. 51-59
Author(s):  
Jin-Seob Kang ◽  
Jeong-Hwan Kim

The electrical properties of materials and their dependence on frequency and temperature are indispensable in designing electromagnetic devices and systems in various areas of engineering and science for both basic and applied researches. A free-space transmission/reflection method measuring the free-space scattering parameters of a material under test (MUT) located at the middle of transmit/receive antennas in a free space is suitable for non-destructively testing the MUT without prior machining or physical contact in high-frequency range. This paper describes a planar offset short applicable to the calibration of a quasi-optic based free-space material measurement system in the millimeter-wave frequency range. The measurement results of the dimensional and electrical properties for the three fabricated planar offset shorts with the phase difference of 120° between the reflection coefficients of the planar shorts in the W-band (75–110 GHz) are presented.


2015 ◽  
Vol 74 (19) ◽  
pp. 1767-1776 ◽  
Author(s):  
V. I. Bezborodov ◽  
O.S. Kosiak ◽  
Ye. M. Kuleshov ◽  
V. V. Yachin

Sign in / Sign up

Export Citation Format

Share Document