20, 000-fps Visual Motion Magnification on Pixel-parallel Vision Chip

Author(s):  
Junxian He ◽  
Xichuan Zhou ◽  
Yingcheng Lin ◽  
Chonglei Sun ◽  
Cong Shi ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6572
Author(s):  
Michał Śmieja ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Tomasz Ciepliński ◽  
Łukasz Szumilas

One of the most important features of the proper operation of technical objects is monitoring the vibrations of their mechanical components. The currently significant proportion of the research methods in this regard includes a group of research methods based on the conversion of vibrations using sensors providing data from individual locations. In parallel with the continuous improvement of these tools, new methods for acquiring information on the condition of the object have emerged due to the rapid development of visual systems. Their actual effectiveness determined the switch from research laboratories to actual industrial installations. In many cases, the application of the visualization methods can supplement the conventional methods applied and, under particular conditions, can effectively replace them. The decisive factor is their non-contact nature and the possibility for simultaneous observation of multiple points of the selected area. Visual motion magnification (MM) is an image processing method that involves the conscious and deliberate deformation of input images to the form that enables the visual observation of vibration processes which are not visible in their natural form. The first part of the article refers to the basic terms in the field of expressing motion in an image (based on the Lagrangian and Eulerian approaches), the formulation of the term of optical flow (OF), and the interpretation of an image in time and space. The following part of the article reviews the main processing algorithms in the aspect of computational complexity and visual quality and their modification for applications under specific conditions. The comparison of the MM methods presented in the paper and recommendations for their applications across a wide variety of fields were supported with examples originating from recent publications. The effectiveness of visual methods based on motion magnification in machine diagnosis and the identification of malfunctions are illustrated with selected examples of the implementation derived from authors’ workshop practice under industrial conditions.


1991 ◽  
Author(s):  
Eric J. Hiris ◽  
Robert H. Cormack ◽  
Randolph Blake
Keyword(s):  

Background: Binasal Occlusion (BNO) is a clinical technique used by many neurorehabilitative optometrists in patients with mild traumatic brain injury (mTBI) and increased visual motion sensitivity (VMS) or visual vertigo. BNO is a technique in which partial occluders are added to the spectacle lenses to suppress the abnormal peripheral visual motion information. This technique helps in reducing VMS symptoms (i.e., nausea, dizziness, balance difficulty, visual confusion). Case Report: A 44-year-old AA female presented for a routine eye exam with a history of mTBI approximately 33 years ago. She was suffering from severe dizziness for the last two years that was adversely impacting her ADLs. The dizziness occurred in all body positions and all environments throughout the day. She was diagnosed with vestibular hypofunction and had undergone vestibular therapy but reported little improvement. Neurological exam revealed dizziness with both OKN drum and hand movement, especially in the left visual field. BNO technique resulted in immediate relief of her dizziness symptoms. Conclusion: To our knowledge, this is the first case that illustrates how the BNO technique in isolation can be beneficial for patients with mTBI and vestibular hypofunction. It demonstrates the success that BNO has in filtering abnormal peripheral visual motion in these patients.


2019 ◽  
Vol 23 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Ryan N. Moran ◽  
Tracey Covassin ◽  
Jessica Wallace

OBJECTIVEMigraine history has recently been identified as a risk factor for concussion and recovery. The authors performed a cross-sectional study examining baseline outcome measures on newly developed and implemented concussion assessment tools in pediatrics. The purpose of this study was to examine the effects of premorbid, diagnosed migraine headaches as a risk factor on vestibular and oculomotor baseline assessment in pediatric athletes.METHODSPediatric athletes between the ages of 8 and 14 years with a diagnosed history of migraine headache (n = 28) and matched controls without a history of diagnosed migraine headache (n = 28) were administered a baseline concussion assessment battery, consisting of the Vestibular/Ocular Motor Screening (VOMS), near point of convergence (NPC), and the King-Devick (K-D) tests. Between-groups comparisons were performed for vestibular symptoms and provocation scores on the VOMS (smooth pursuit, saccades, convergence, vestibular/ocular reflex, visual motion sensitivity), NPC (average distance), and K-D (time).RESULTSIndividuals diagnosed with migraine headaches reported greater VOMS smooth pursuit scores (p = 0.02), convergence scores (p = 0.04), vestibular ocular reflex scores (p value range 0.002–0.04), and visual motion sensitivity scores (p = 0.009). Differences were also observed on K-D oculomotor performance with worse times in those diagnosed with migraine headache (p = 0.02). No differences were reported on NPC distance (p = 0.06) or headache symptom reporting (p = 0.07) prior to the VOMS assessment.CONCLUSIONSPediatric athletes diagnosed with migraine headaches reported higher baseline symptom provocation scores on the VOMS. Athletes with migraine headaches also performed worse on the K-D test, further illustrating the influence of premorbid migraine headaches as a risk factor for elevated concussion assessment outcomes at baseline. Special consideration may be warranted for post-concussion assessment in athletes with migraine headaches.


Sign in / Sign up

Export Citation Format

Share Document