Recycling nickel-cadmium batteries through the high temperature metal recovery process and NEW cadmium recovery facility

Author(s):  
R.H. Hanewald ◽  
M.E. Schweers ◽  
J.J. Liotta
Author(s):  
Jan P. van Ravenswaay ◽  
Jacques Holtzhausen ◽  
Jaco van der Merwe ◽  
Kobus Olivier ◽  
Riaan du Bruyn ◽  
...  

The Next Generation Nuclear Plant (NGNP) Project is a US-based initiative led by Idaho National Laboratories to demonstrate the viability of using High Temperature Gas-Cooled Reactor (HTGR) technology for the production of high temperature steam and/or heat for applications such as heavy oil recovery, process steam/cogeneration and hydrogen production. A key part of the NGNP Project is the development of a Component Test Facility (CTF) that will support the development of high temperature gas thermal-hydraulic technologies as applied in heat transport and heat transfer applications in HTGRs. These applications include, but are not limited to, primary and secondary coolants, direct cycle power conversion, co-generation, intermediate, secondary and tertiary heat transfer, demonstration of processes requiring high temperatures as well as testing of NGNP specific control, maintenance and inspection philosophies and techniques. The feasibility of the envisioned CTF as a development and testing platform for components and systems in support of the NGNP was evaluated. For components and systems to be integrated into the NGNP full scale or at least representative size tests need to be conducted at NGNP representative conditions, with regards to pressure, flow rate and temperature. Typical components to be tested in the CTF include heat exchangers, steam generators, circulators, valves and gas piping. The Design Data Needs (DDNs), Technology Readiness Levels (TRLs) as well as Design Readiness Levels (DRLs) prepared in the pre-conceptual design of the NGNP Project and the NGNP lifecycle requirements were used as inputs to establish the CTF Functional and Operating Requirements (F&ORs). The existing South African PBMR test facilities were evaluated to determine their current applicability or possible modifications to meet the F&ORs of the CTF. Three concepts were proposed and initial energy balances and layouts were developed. This paper will present the results of this CTF study and the ongoing efforts to establish the CTF.


1995 ◽  
Vol 55 (2) ◽  
pp. 247-250 ◽  
Author(s):  
Mauro Bartolozzi ◽  
Gaetano Braccini ◽  
Stefania Bonvini ◽  
Pier Filippo Marconi

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu Dong ◽  
Haozhe Geng ◽  
Guan Hao ◽  
Pan Li ◽  
Yi Teng ◽  
...  

It is of great significance for the sustainable development of global energy to develop hot dry rock (HDR) geothermal resources by using enhanced geothermal system (EGS) technology. Different working fluids in EGS have different heat recovery efficiencies. Therefore, this paper takes water and CO2 as the heat-carrying media and establishes a thermal hydraulic mechanical coupling model to simulate the heat recovery process in high-temperature rock mass. By considering the different confining pressures, rock temperature, and injection pressure, the advantages of H2O-EGS and CO2-EGS are obtained. The results show that with the increase of confining pressure, the heat recovery efficiency of water is significantly higher than that of CO2, but at higher reservoir temperature, CO2 has more advantages as a heat-carrying medium. The net heat extraction rate will increase with the increase of injection pressure, which indicates that the mass flow rate plays a leading role in the heat recovery process and increases the injection pressure of fluid which is more conducive to the thermal recovery of EGS. This study will provide a technical guidance for thermal energy exploitation of hot dry rock under different geological conditions.


2007 ◽  
Vol 48 (2) ◽  
pp. 244-248 ◽  
Author(s):  
Shun-Myung Shin ◽  
Jin-Gu Kang ◽  
Dong-Hyo Yang ◽  
Jeong-Soo Sohn

Sign in / Sign up

Export Citation Format

Share Document