Urban Crime Trends Analysis and Occurrence Possibility Prediction based on Light Gradient Boosting Machine

Author(s):  
Xiangzhi Tong ◽  
Pin Ni ◽  
Qingge Li ◽  
QiAo Yuan ◽  
Junru Liu ◽  
...  
Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 116
Author(s):  
Xiangfa Zhao ◽  
Guobing Sun

Automatic sleep staging with only one channel is a challenging problem in sleep-related research. In this paper, a simple and efficient method named PPG-based multi-class automatic sleep staging (PMSS) is proposed using only a photoplethysmography (PPG) signal. Single-channel PPG data were obtained from four categories of subjects in the CAP sleep database. After the preprocessing of PPG data, feature extraction was performed from the time domain, frequency domain, and nonlinear domain, and a total of 21 features were extracted. Finally, the Light Gradient Boosting Machine (LightGBM) classifier was used for multi-class sleep staging. The accuracy of the multi-class automatic sleep staging was over 70%, and the Cohen’s kappa statistic k was over 0.6. This also showed that the PMSS method can also be applied to stage the sleep state for patients with sleep disorders.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
B. A Omodunbi

Diabetes mellitus is a health disorder that occurs when the blood sugar level becomes extremely high due to body resistance in producing the required amount of insulin. The aliment happens to be among the major causes of death in Nigeria and the world at large. This study was carried out to detect diabetes mellitus by developing a hybrid model that comprises of two machine learning model namely Light Gradient Boosting Machine (LGBM) and K-Nearest Neighbor (KNN). This research is aimed at developing a machine learning model for detecting the occurrence of diabetes in patients. The performance metrics employed in evaluating the finding for this study are Receiver Operating Characteristics (ROC) Curve, Five-fold Cross-validation, precision, and accuracy score. The proposed system had an accuracy of 91% and the area under the Receiver Operating Characteristic Curve was 93%. The experimental result shows that the prediction accuracy of the hybrid model is better than traditional machine learning


2020 ◽  
Vol 12 (14) ◽  
pp. 2271 ◽  
Author(s):  
Jinwoong Park ◽  
Jihoon Moon ◽  
Seungmin Jung ◽  
Eenjun Hwang

Smart islands have focused on renewable energy sources, such as solar and wind, to achieve energy self-sufficiency. Because solar photovoltaic (PV) power has the advantage of less noise and easier installation than wind power, it is more flexible in selecting a location for installation. A PV power system can be operated more efficiently by predicting the amount of global solar radiation for solar power generation. Thus far, most studies have addressed day-ahead probabilistic forecasting to predict global solar radiation. However, day-ahead probabilistic forecasting has limitations in responding quickly to sudden changes in the external environment. Although multistep-ahead (MSA) forecasting can be used for this purpose, traditional machine learning models are unsuitable because of the substantial training time. In this paper, we propose an accurate MSA global solar radiation forecasting model based on the light gradient boosting machine (LightGBM), which can handle the training-time problem and provide higher prediction performance compared to other boosting methods. To demonstrate the validity of the proposed model, we conducted a global solar radiation prediction for two regions on Jeju Island, the largest island in South Korea. The experiment results demonstrated that the proposed model can achieve better predictive performance than the tree-based ensemble and deep learning methods.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 150960-150968 ◽  
Author(s):  
Tingting Chen ◽  
Jun Xu ◽  
Haochao Ying ◽  
Xiaojun Chen ◽  
Ruiwei Feng ◽  
...  

2021 ◽  
Author(s):  
Jing Wei ◽  
Zhanqing Li ◽  
Rachel T. Pinker ◽  
Lin Sun ◽  
Wenhao Xue ◽  
...  

Abstract. PM2.5 has been used as an important atmospheric environmental parameter primarily due to its impact on human health. PM2.5 is affected by both natural and anthropogenic factors that usually have strong diurnal variations. Monitoring it does not only help understand the causes of air pollution but also our adaptation to it. Most existing PM2.5 products have been derived from polar-orbiting satellites. This study exploits the usage of the next-generation geostationary meteorological satellite Himawari-8/AHI in revealing its diurnal variations. Given the huge volume of the satellite data, a highly efficient tree-based Light Gradient Boosting Machine (LightGBM) learning approach, which is based on the idea of gradient boosting, is applied by involving the spatiotemporal characteristics of air pollution, named the space-time LightGBM (STLG) model. Hourly PM2.5 data set in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution is derived based on the Himawari-8/AHI aerosol products together with other variables. The hourly PM2.5 estimates (N = 1,415,188) are well correlated with ground measurements (R2 = 0.85) with a RMSE and MAE of 13.62 and 8.49 μg/m3 respectively in China. Our model can capture well the PM2.5 diurnal variations, where the pollution increases gradually in the morning, and reaches a peak at about 10:00 a.m. local time, then decreases steadily until sunset. The proposed approach outperforms most traditional statistical regression and tree-based machine learning models with a much lower computation burden in terms of speed and memory, making it most suitable for routine pollution monitoring.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 765 ◽  
Author(s):  
Weizhang Liang ◽  
Suizhi Luo ◽  
Guoyan Zhao ◽  
Hao Wu

Predicting pillar stability is a vital task in hard rock mines as pillar instability can cause large-scale collapse hazards. However, it is challenging because the pillar stability is affected by many factors. With the accumulation of pillar stability cases, machine learning (ML) has shown great potential to predict pillar stability. This study aims to predict hard rock pillar stability using gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) algorithms. First, 236 cases with five indicators were collected from seven hard rock mines. Afterwards, the hyperparameters of each model were tuned using a five-fold cross validation (CV) approach. Based on the optimal hyperparameters configuration, prediction models were constructed using training set (70% of the data). Finally, the test set (30% of the data) was adopted to evaluate the performance of each model. The precision, recall, and F1 indexes were utilized to analyze prediction results of each level, and the accuracy and their macro average values were used to assess the overall prediction performance. Based on the sensitivity analysis of indicators, the relative importance of each indicator was obtained. In addition, the safety factor approach and other ML algorithms were adopted as comparisons. The results showed that GBDT, XGBoost, and LightGBM algorithms achieved a better comprehensive performance, and their prediction accuracies were 0.8310, 0.8310, and 0.8169, respectively. The average pillar stress and ratio of pillar width to pillar height had the most important influences on prediction results. The proposed methodology can provide a reliable reference for pillar design and stability risk management.


Sign in / Sign up

Export Citation Format

Share Document