Detection of asphyxia from infant cry using support vector machine and multilayer perceptron integrated with Orthogonal Least Square

Author(s):  
R. Sahak ◽  
W. Mansor ◽  
L. Y. Khuan ◽  
A. Zabidi ◽  
A. I. M. Yassin
Author(s):  
R. Sahak ◽  
W. Mansor ◽  
Khuan Y. Lee ◽  
A. Zabidi

<p>An investigation into optimized support vector machine (SVM) integrated with principal component analysis (PCA) and orthogonal least square (OLS) in classifying asphyxiated infant cry was performed in this study. Three approaches were used in the classification; SVM, PCA-SVM, and OLS-SVM. Various numbers of features extracted from Mel-frequency Cepstral coefficient (MFCC) were tested to obtain the optimal parameters of SVM kernels. Once the optimal feature set is obtained, PCA and OLS selected the most significant features and the optimized SVM then classified the selected cry patterns. In PCA-SVM, eigenvalue-one-criterion (EOC), cumulative percentage variance (CPV) and the Scree test (SCREE) were used to select the most significant features. SVM with radial basis function (RBF) kernel was chosen in the classification stage. The classification accuracy and computation time were computed to evaluate the performance of each method. The best method for classifying asphyxiated infant cry is PCA-SVM with EOC since it produces the highest classification accuracy which is 94.84%. Using PCA-SVM, the classification process was performed in 1.98s only. The results also show that employing feature selection techniques could enhance the classifier performance.</p>


2018 ◽  
Vol 7 (3.15) ◽  
pp. 114
Author(s):  
R Sahak ◽  
W Mansor ◽  
Khuan Y. Lee ◽  
A Zabidi

Detection of asphyxia in infant at an early stage is crucial to reduce the rate of infant morbidity. The information regarding asphyxia can be extracted from infant cry signals using support vector machine (SVM) combined with effective feature selection methods such as principal component analysis (PCA) or orthogonal least square (OLS). The performance of SVM in recognizing infant cry with asphyxia after undergone comprehensive identification of optimal parameters at the feature extraction and classification stages has not been     reported. This paper describes the two stages of optimal parameter identification; at Mel-frequency Cepstral coefficient (MFCC) analysis stage, SVM with and without employing the PCA and OLS stages, and the performance of the SVM in recognizing infant cry with asphyxia resulted from all levels of optimal parameters identification. The SVM was first optimized after performing MFCC analysis to find the optimum parameters. Two types of kernels were used, the polynomial and RBF kernels. The subsequent SVM optimizations were conducted after PCA and OLS were employed. In the PCA, the significant features were selected using eigenvalue-one-criterion (EOC), cumulative percentage variance (CPV) and the Scree test (SCREE). The SVM performance was evaluated based on classification accuracy and computation time. The experimental results have shown that the optimized SVM was able to recognize the asphyxiated infant cry with an accuracy of 94.84% and computation time of 1.98s using PCA with EOC and RBF kernel.  


Sign in / Sign up

Export Citation Format

Share Document