Heterogeneous data fusion and selection in high-volume molecular and imaging datasets

Author(s):  
Konstantinos Moutselos ◽  
Ilias Maglogiannis ◽  
Aristotelis Chatziioannou
2015 ◽  
Vol 19 (12) ◽  
pp. 4747-4764 ◽  
Author(s):  
F. Alshawaf ◽  
B. Fersch ◽  
S. Hinz ◽  
H. Kunstmann ◽  
M. Mayer ◽  
...  

Abstract. Data fusion aims at integrating multiple data sources that can be redundant or complementary to produce complete, accurate information of the parameter of interest. In this work, data fusion of precipitable water vapor (PWV) estimated from remote sensing observations and data from the Weather Research and Forecasting (WRF) modeling system are applied to provide complete grids of PWV with high quality. Our goal is to correctly infer PWV at spatially continuous, highly resolved grids from heterogeneous data sets. This is done by a geostatistical data fusion approach based on the method of fixed-rank kriging. The first data set contains absolute maps of atmospheric PWV produced by combining observations from the Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). These PWV maps have a high spatial density and a millimeter accuracy; however, the data are missing in regions of low coherence (e.g., forests and vegetated areas). The PWV maps simulated by the WRF model represent the second data set. The model maps are available for wide areas, but they have a coarse spatial resolution and a still limited accuracy. The PWV maps inferred by the data fusion at any spatial resolution show better qualities than those inferred from single data sets. In addition, by using the fixed-rank kriging method, the computational burden is significantly lower than that for ordinary kriging.


2020 ◽  
Vol 32 (5) ◽  
pp. 829-864 ◽  
Author(s):  
Jing Gao ◽  
Peng Li ◽  
Zhikui Chen ◽  
Jianing Zhang

With the wide deployments of heterogeneous networks, huge amounts of data with characteristics of high volume, high variety, high velocity, and high veracity are generated. These data, referred to multimodal big data, contain abundant intermodality and cross-modality information and pose vast challenges on traditional data fusion methods. In this review, we present some pioneering deep learning models to fuse these multimodal big data. With the increasing exploration of the multimodal big data, there are still some challenges to be addressed. Thus, this review presents a survey on deep learning for multimodal data fusion to provide readers, regardless of their original community, with the fundamentals of multimodal deep learning fusion method and to motivate new multimodal data fusion techniques of deep learning. Specifically, representative architectures that are widely used are summarized as fundamental to the understanding of multimodal deep learning. Then the current pioneering multimodal data fusion deep learning models are summarized. Finally, some challenges and future topics of multimodal data fusion deep learning models are described.


Sign in / Sign up

Export Citation Format

Share Document