Communication-Efficient Local Stochastic Gradient Descent for Scalable Deep Learning

Author(s):  
Sunwoo Lee ◽  
Qiao Kang ◽  
Ankit Agrawal ◽  
Alok Choudhary ◽  
Wei-keng Liao
2020 ◽  
Vol 63 (6) ◽  
pp. 900-912
Author(s):  
Oswalt Manoj S ◽  
Ananth J P

Abstract Rainfall prediction is the active area of research as it enables the farmers to move with the effective decision-making regarding agriculture in both cultivation and irrigation. The existing prediction models are scary as the prediction of rainfall depended on three major factors including the humidity, rainfall and rainfall recorded in the previous years, which resulted in huge time consumption and leveraged huge computational efforts associated with the analysis. Thus, this paper introduces the rainfall prediction model based on the deep learning network, convolutional long short-term memory (convLSTM) system, which promises a prediction based on the spatial-temporal patterns. The weights of the convLSTM are tuned optimally using the proposed Salp-stochastic gradient descent algorithm (S-SGD), which is the integration of Salp swarm algorithm (SSA) in the stochastic gradient descent (SGD) algorithm in order to facilitate the global optimal tuning of the weights and to assure a better prediction accuracy. On the other hand, the proposed deep learning framework is built in the MapReduce framework that enables the effective handling of the big data. The analysis using the rainfall prediction database reveals that the proposed model acquired the minimal mean square error (MSE) and percentage root mean square difference (PRD) of 0.001 and 0.0021.


2020 ◽  
Vol 34 (04) ◽  
pp. 6861-6868 ◽  
Author(s):  
Yikai Zhang ◽  
Hui Qu ◽  
Dimitris Metaxas ◽  
Chao Chen

Regularization plays an important role in generalization of deep learning. In this paper, we study the generalization power of an unbiased regularizor for training algorithms in deep learning. We focus on training methods called Locally Regularized Stochastic Gradient Descent (LRSGD). An LRSGD leverages a proximal type penalty in gradient descent steps to regularize SGD in training. We show that by carefully choosing relevant parameters, LRSGD generalizes better than SGD. Our thorough theoretical analysis is supported by experimental evidence. It advances our theoretical understanding of deep learning and provides new perspectives on designing training algorithms. The code is available at https://github.com/huiqu18/LRSGD.


2018 ◽  
Author(s):  
Kazunori D Yamada

ABSTRACTIn the deep learning era, stochastic gradient descent is the most common method used for optimizing neural network parameters. Among the various mathematical optimization methods, the gradient descent method is the most naive. Adjustment of learning rate is necessary for quick convergence, which is normally done manually with gradient descent. Many optimizers have been developed to control the learning rate and increase convergence speed. Generally, these optimizers adjust the learning rate automatically in response to learning status. These optimizers were gradually improved by incorporating the effective aspects of earlier methods. In this study, we developed a new optimizer: YamAdam. Our optimizer is based on Adam, which utilizes the first and second moments of previous gradients. In addition to the moment estimation system, we incorporated an advantageous part of AdaDelta, namely a unit correction system, into YamAdam. According to benchmark tests on some common datasets, our optimizer showed similar or faster convergent performance compared to the existing methods. YamAdam is an option as an alternative optimizer for deep learning.


Sign in / Sign up

Export Citation Format

Share Document