Forecasting Air Pollution using a Modified Compositional Learning Approach

Author(s):  
Samuel A. Ajila ◽  
Karthik Dilliraj

Pollution exposure and human health in the industry contaminated area are always a concern. The need for industrialization urges to concentrate on sustainable life of residents in the vicinity of the industrial area rather than opposing the industrialists. Literature in epidemiological studies reveal that air pollution is one of the major problems for health risks faced by residents in the industrial area. Main pollutants in industry related air pollution are particulate matter (PM2.5, PM10), SO2 , NO2 , and other pollutants upon the industry. Data for epidemiological studies obtained from different sources which are limited to public access include residents’ sociodemographic characters, health problems, and air quality index for personal exposure to pollutants. This combined data and limited resources make the analysis more complex so that statistical methods cannot compensate. Our review finds that there is an increase in literature that evaluates the connection between ambient air pollution exposure and associated health events of residents in the industrially polluted area using statistical methods, mainly regression models. A very few applies machine learning techniques to figure out the impact of common air pollution exposure on human health. Most of the machine learning approach to epidemiological studies end up in air pollution exposure monitoring, not to correlate its association with diseases. A machine learning approach to epidemiological studies can automatically characterize the residents’ exposure to pollutants and its associated health effects. Uniqueness of the model depends on the appropriate exhaustive data that characterizes the features, and machine learning algorithm used to build the model. In this contribution, we discuss various existing approaches that evaluate residents’ health effects and the source of irritation in association with air pollution exposure, focuses machine learning techniques and mathematical background for epidemiological studies for residents’ sustainable life.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xin-Yu Tu ◽  
Bo Zhang ◽  
Yu-Peng Jin ◽  
Guo-Jian Zou ◽  
Jian-Guo Pan ◽  
...  

Air pollution has become a critical issue in human’s life. Predicting the changing trends of air pollutants would be of great help for public health and natural environments. Current methods focus on the prediction accuracy and retain the forecasting time span within 12 hours. Shorter time span decreases the practicability of these perditions, even with higher accuracy. This study proposes an attention and autoencoder (A&A) hybrid learning approach to obtain a longer period of air pollution changing trends while holding the same high accuracy. Since pollutant concentration forecast highly relates to time changing, quite different from normal prediction problems like autotranslation, we integrate “time decay factor” into the traditional attention mechanism. The time decay factor can alleviate the impact of the value observed from a longer time before while increasing the impact of the value from a closer time point. We also utilize the hidden states in the decoder to build connection between history values and current ones. Thus, the proposed model can extract the changing trend of a longer history time span while coping with abrupt changes within a shorter time span. A set of experiments demonstrate that the A&A learning approach can obtain the changing trend of air pollutants, like PM2.5, during a longer time span of 12, 24, or even 48 hours. The approach is also tested under different pollutant concentrations and different periods and the results validate its robustness and generality.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Luca Boniardi ◽  
Federica Nobile ◽  
Massimo Stafoggia ◽  
Paola Michelozzi ◽  
Carla Ancona

Abstract Background Air pollution is one of the main concerns for the health of European citizens, and cities are currently striving to accomplish EU air pollution regulation. The 2020 COVID-19 lockdown measures can be seen as an unintended but effective experiment to assess the impact of traffic restriction policies on air pollution. Our objective was to estimate the impact of the lockdown measures on NO2 concentrations and health in the two largest Italian cities. Methods NO2 concentration datasets were built using data deriving from a 1-month citizen science monitoring campaign that took place in Milan and Rome just before the Italian lockdown period. Annual mean NO2 concentrations were estimated for a lockdown scenario (Scenario 1) and a scenario without lockdown (Scenario 2), by applying city-specific annual adjustment factors to the 1-month data. The latter were estimated deriving data from Air Quality Network stations and by applying a machine learning approach. NO2 spatial distribution was estimated at a neighbourhood scale by applying Land Use Random Forest models for the two scenarios. Finally, the impact of lockdown on health was estimated by subtracting attributable deaths for Scenario 1 and those for Scenario 2, both estimated by applying literature-based dose–response function on the counterfactual concentrations of 10 μg/m3. Results The Land Use Random Forest models were able to capture 41–42% of the total NO2 variability. Passing from Scenario 2 (annual NO2 without lockdown) to Scenario 1 (annual NO2 with lockdown), the population-weighted exposure to NO2 for Milan and Rome decreased by 15.1% and 15.3% on an annual basis. Considering the 10 μg/m3 counterfactual, prevented deaths were respectively 213 and 604. Conclusions Our results show that the lockdown had a beneficial impact on air quality and human health. However, compliance with the current EU legal limit is not enough to avoid a high number of NO2 attributable deaths. This contribution reaffirms the potentiality of the citizen science approach and calls for more ambitious traffic calming policies and a re-evaluation of the legal annual limit value for NO2 for the protection of human health.


2021 ◽  
Vol 1834 (1) ◽  
pp. 012004
Author(s):  
Andrzej Dulny ◽  
Michael Steininger ◽  
Florian Lautenschlager ◽  
Anna Krause ◽  
Andreas Hotho

Sign in / Sign up

Export Citation Format

Share Document