Robust Method to Convert HIRAGANA Sequences into Japanese Text

Author(s):  
Toshiki Yamaguchi ◽  
Kazuo Hara ◽  
Ikumi Suzuki
Keyword(s):  
Synthesis ◽  
2019 ◽  
Vol 52 (02) ◽  
pp. 311-319
Author(s):  
Austin D. Marchese ◽  
Bijan Mirabi ◽  
Egor M. Larin ◽  
Mark Lautens

A Ni-catalyzed C–S cross-coupling using only NiI2 (0.5–2.5 mol%) and P(OiPr)3 (2.0–10.0 mol%) is reported. Using an air-stable Ni(II) precatalyst, and a cheap and commercially available ligand, a scalable and robust method was developed to cross-couple various thiophenols and styryl bromides, including some sterically encumbered thiols, an α-bromocinnamaldehyde as well as a thiolation-cyclization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan Kozak ◽  
Kasra Khorsand ◽  
Telnaz Zarifi ◽  
Kevin Golovin ◽  
Mohammad H. Zarifi

AbstractA patch antenna sensor with T-shaped slots operating at 2.378 GHz was developed and investigated for wireless ice and frost detection applications. Detection was performed by monitoring the resonant amplitude and resonant frequency of the transmission coefficient between the antenna sensor and a wide band receiver. This sensor was capable of distinguishing between frost, ice, and water with total shifts in resonant frequency of 32 MHz and 36 MHz in the presence of frost and ice, respectively, when compared to the bare sensor. Additionally, the antenna was sensitive to both ice thickness and the surface area covered in ice displaying resonant frequency shifts of 2 MHz and 8 MHz respectively between 80 and 160 μL of ice. By fitting an exponential function to the recorded data, the freezing rate was also extracted. The analysis within this work distinguishes the antenna sensor as a highly accurate and robust method for wireless ice accretion detection and monitoring. This technology has applications in a variety of industries including the energy sector for detection of ice on wind turbines and power lines.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
B Hughes ◽  
J Stallard ◽  
S Jivan

Abstract Introduction Surgical drains are used by many specialities, we aim to determine the most robust method of securing them by comparing suturing technique, material and fixation angle. Method A Blake’s drain was inserted into a piece of pork belly and secured using a standard ‘three half hitch’ technique with 3.0 Silk, EthilonTM and ProleneTM . For each suture type, drains were sutured in line, at 45 and 90 degrees to the course of the drain. The force needed for the suture to failure was measured and each repeated 3 times. Different suture techniques were then used to determine the strongest fixation. Results With the drain exiting inline the moment of failure was, on average, 1.25kg for silk, 3.5kg for EthilonTM and 4.0kg for ProleneTM. Increasing drain fixation angle required more force for the suture to fail. With EthilonTM and ProleneTM, the suture snapped before the drain slipped. Three half hitches was the strongest technique. Conclusions Suture material, technique and drain fixation angle had an impact on suture strength with ProleneTM outperforming Silk. We advocate using a ‘three half hitch’ technique with 3.0 ProleneTM to secure a surgical drain. It offers superior strength whilst reducing the risk of localised tissue reactions.


Nanoscale ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 5410-5418
Author(s):  
Rocío López-Cabeza ◽  
Melanie Kah ◽  
Renato Grillo ◽  
Zuzana Bílková ◽  
Jakub Hofman

Encapsulation efficiency of nanoformulated pesticides is often determined by centrifugal ultrafiltration.


2020 ◽  
Vol 53 (2) ◽  
pp. 6095-6100
Author(s):  
Yusuke Igarashi ◽  
Masaki Yamakita ◽  
Jerry Ng ◽  
H. Harry Asada
Keyword(s):  

2002 ◽  
Vol 43 (2) ◽  
pp. 344-349 ◽  
Author(s):  
Kevin P. Dwyer ◽  
P. Hugh R. Barrett ◽  
Dick Chan ◽  
Jock I. Foo ◽  
Gerald F. Watts ◽  
...  

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 51
Author(s):  
Fábio Azevedo ◽  
Jaime S. Cardoso ◽  
André Ferreira ◽  
Tiago Fernandes ◽  
Miguel Moreira ◽  
...  

The usage of unmanned aerial vehicles (UAV) has increased in recent years and new application scenarios have emerged. Some of them involve tasks that require a high degree of autonomy, leading to increasingly complex systems. In order for a robot to be autonomous, it requires appropriate perception sensors that interpret the environment and enable the correct execution of the main task of mobile robotics: navigation. In the case of UAVs, flying at low altitude greatly increases the probability of encountering obstacles, so they need a fast, simple, and robust method of collision avoidance. This work covers the problem of navigation in unknown scenarios by implementing a simple, yet robust, environment-reactive approach. The implementation is done with both CPU and GPU map representations to allow wider coverage of possible applications. This method searches for obstacles that cross a cylindrical safety volume, and selects an escape point from a spiral for avoiding the obstacle. The algorithm is able to successfully navigate in complex scenarios, using both a high and low-power computer, typically found aboard UAVs, relying only on a depth camera with a limited FOV and range. Depending on the configuration, the algorithm can process point clouds at nearly 40 Hz in Jetson Nano, while checking for threats at 10 kHz. Some preliminary tests were conducted with real-world scenarios, showing both the advantages and limitations of CPU and GPU-based methodologies.


Author(s):  
Debangshu Mukherjee ◽  
Leixin Miao ◽  
Greg Stone ◽  
Nasim Alem

Sign in / Sign up

Export Citation Format

Share Document