scholarly journals Efficient Reactive Obstacle Avoidance Using Spirals for Escape

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 51
Author(s):  
Fábio Azevedo ◽  
Jaime S. Cardoso ◽  
André Ferreira ◽  
Tiago Fernandes ◽  
Miguel Moreira ◽  
...  

The usage of unmanned aerial vehicles (UAV) has increased in recent years and new application scenarios have emerged. Some of them involve tasks that require a high degree of autonomy, leading to increasingly complex systems. In order for a robot to be autonomous, it requires appropriate perception sensors that interpret the environment and enable the correct execution of the main task of mobile robotics: navigation. In the case of UAVs, flying at low altitude greatly increases the probability of encountering obstacles, so they need a fast, simple, and robust method of collision avoidance. This work covers the problem of navigation in unknown scenarios by implementing a simple, yet robust, environment-reactive approach. The implementation is done with both CPU and GPU map representations to allow wider coverage of possible applications. This method searches for obstacles that cross a cylindrical safety volume, and selects an escape point from a spiral for avoiding the obstacle. The algorithm is able to successfully navigate in complex scenarios, using both a high and low-power computer, typically found aboard UAVs, relying only on a depth camera with a limited FOV and range. Depending on the configuration, the algorithm can process point clouds at nearly 40 Hz in Jetson Nano, while checking for threats at 10 kHz. Some preliminary tests were conducted with real-world scenarios, showing both the advantages and limitations of CPU and GPU-based methodologies.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4227
Author(s):  
Nicolás Jacob-Loyola ◽  
Felipe Muñoz-La Rivera ◽  
Rodrigo F. Herrera ◽  
Edison Atencio

The physical progress of a construction project is monitored by an inspector responsible for verifying and backing up progress information, usually through site photography. Progress monitoring has improved, thanks to advances in image acquisition, computer vision, and the development of unmanned aerial vehicles (UAVs). However, no comprehensive and simple methodology exists to guide practitioners and facilitate the use of these methods. This research provides recommendations for the periodic recording of the physical progress of a construction site through the manual operation of UAVs and the use of point clouds obtained under photogrammetric techniques. The programmed progress is then compared with the actual progress made in a 4D BIM environment. This methodology was applied in the construction of a reinforced concrete residential building. The results showed the methodology is effective for UAV operation in the work site and the use of the photogrammetric visual records for the monitoring of the physical progress and the communication of the work performed to the project stakeholders.


Author(s):  
Damian Wierzbicki ◽  
Anna Fryskowska

The issue of imagery data collection and its implementation in photogrammetric studies with the use of unmanned aerial vehicles is still valid and provides a wide field of research in the creation of new and expansion of existing solutions. It is particularly important to increase the accuracy of photogrammetric products. These days low altitude unmanned aerial vehicles are being used more and more often in photogrammetric applications. Compact digital cameras had acquired single, high-resolution imagery. Data obtained from low altitudes were often (and still are) used in mapping and 3D modelling. Due to the low costs of flights of UAV systems in comparison with traditional flights, applications of such platforms are also attractive for many remote sensing applications. However, due to the use of non-metric video cameras, one of the main problems when trying to automate the video data processing, is the video sequences’ relatively poor radiometric quality. The article addresses the issue of assessing the quality of the video imagery acquired from a low altitude UAV platform. The Authors presented quality Indicators dedicated to UAV video sequences. The method is based on the analysis of the video stream, obtained in the different weather and lighting conditions. As a result of the research, an objective quality index for video acquired from low altitudes was determined.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4779 ◽  
Author(s):  
Nader S. Labib ◽  
Grégoire Danoy ◽  
Jedrzej Musial ◽  
Matthias R. Brust ◽  
Pascal Bouvry

The rapid adoption of Internet of Things (IoT) has encouraged the integration of new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network. UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT infrastructure as well as bring new means of delivering IoT services through a wide range of applications. Owning to their potential, UAVs are expected to soon dominate the low-altitude airspace over populated cities. This introduces new research challenges such as the safe management of UAVs operation under high traffic demands. This paper proposes a novel way of structuring the uncontrolled, low-altitude airspace, with the aim of addressing the complex problem of UAV traffic management at an abstract level. The work, hence, introduces a model of the airspace as a weighted multilayer network of nodes and airways and presents a set of experimental simulation results using three UAV traffic management heuristics.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 93
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

In the past two decades, unmanned aerial vehicles (UAVs) have been used in many scientific research fields for various applications. In particular, the use of UAVs for magnetic surveys has become a hot spot and is expected to be actively applied in the future. A considerable amount of literature has been published on the use of UAVs for magnetic surveys, however, how to choose the platform and reduce the interference of UAV to the collected data have not been discussed systematically. There are two primary aims of this study: (1) To ascertain the basis of UAV platform selection and (2) to investigate the characteristics and suppression methods of UAV magnetic interference. Systematic reviews were performed to summarize the results of 70 academic studies (from 2005 to 2021) and outline the research tendencies for applying UAVs in magnetic surveys. This study found that multi-rotor UAVs have become the most widely used type of UAVs in recent years because of their advantages such as easiness to operate, low cost, and the ability of flying at a very low altitude, despite their late appearance. With the improvement of the payload capacity of UAVs, to use multiple magnetometers becomes popular since it can provide more abundant information. In addition, this study also found that the most commonly used method to reduce the effects of the UAV’s magnetic interference is to increase the distance between the sensors and the UAV, although this method will bring about other problems, e.g., the directional and positional errors of sensors caused by erratic movements, the increased risk of impact to the magnetometers. The pros and cons of different types of UAV, magnetic interference characteristics and suppression methods based on traditional aeromagnetic compensation and other methods are discussed in detail. This study contributes to the classification of current UAV applications as well as the data processing methods in magnetic surveys.


Sign in / Sign up

Export Citation Format

Share Document