Deep Multi-task Learning for Large-Scale Image Classification

Author(s):  
Zhenzhong Kuang ◽  
Zongmin Li ◽  
Tianyi Zhao ◽  
Jianping Fan
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110131
Author(s):  
Junfeng Wu ◽  
Li Yao ◽  
Bin Liu ◽  
Zheyuan Ding ◽  
Lei Zhang

As more and more sensor data have been collected, automated detection, and diagnosis systems are urgently needed to lessen the increasing monitoring burden and reduce the risk of system faults. A plethora of researches have been done on anomaly detection, event detection, anomaly diagnosis respectively. However, none of current approaches can explore all these respects in one unified framework. In this work, a Multi-Task Learning based Encoder-Decoder (MTLED) which can simultaneously detect anomalies, diagnose anomalies, and detect events is proposed. In MTLED, feature matrix is introduced so that features are extracted for each time point and point-wise anomaly detection can be realized in an end-to-end way. Anomaly diagnosis and event detection share the same feature matrix with anomaly detection in the multi-task learning framework and also provide important information for system monitoring. To train such a comprehensive detection and diagnosis system, a large-scale multivariate time series dataset which contains anomalies of multiple types is generated with simulation tools. Extensive experiments on the synthetic dataset verify the effectiveness of MTLED and its multi-task learning framework, and the evaluation on a real-world dataset demonstrates that MTLED can be used in other application scenarios through transfer learning.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2017 ◽  
Vol 26 (4) ◽  
pp. 1923-1938 ◽  
Author(s):  
Jianping Fan ◽  
Tianyi Zhao ◽  
Zhenzhong Kuang ◽  
Yu Zheng ◽  
Ji Zhang ◽  
...  

2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2020 ◽  
Vol 14 (3) ◽  
pp. 342-350
Author(s):  
Hao Liu ◽  
Jindong Han ◽  
Yanjie Fu ◽  
Jingbo Zhou ◽  
Xinjiang Lu ◽  
...  

Multi-modal transportation recommendation aims to provide the most appropriate travel route with various transportation modes according to certain criteria. After analyzing large-scale navigation data, we find that route representations exhibit two patterns: spatio-temporal autocorrelations within transportation networks and the semantic coherence of route sequences. However, there are few studies that consider both patterns when developing multi-modal transportation systems. To this end, in this paper, we study multi-modal transportation recommendation with unified route representation learning by exploiting both spatio-temporal dependencies in transportation networks and the semantic coherence of historical routes. Specifically, we propose to unify both dynamic graph representation learning and hierarchical multi-task learning for multi-modal transportation recommendations. Along this line, we first transform the multi-modal transportation network into time-dependent multi-view transportation graphs and propose a spatiotemporal graph neural network module to capture the spatial and temporal autocorrelation. Then, we introduce a coherent-aware attentive route representation learning module to project arbitrary-length routes into fixed-length representation vectors, with explicit modeling of route coherence from historical routes. Moreover, we develop a hierarchical multi-task learning module to differentiate route representations for different transport modes, and this is guided by the final recommendation feedback as well as multiple auxiliary tasks equipped in different network layers. Extensive experimental results on two large-scale real-world datasets demonstrate the performance of the proposed system outperforms eight baselines.


Sign in / Sign up

Export Citation Format

Share Document