A Practical Channel Estimation Scheme for Sub-Connected Hybrid Massive MIMO Systems

Author(s):  
Zijian Zhang ◽  
Yue Li ◽  
Lingna H ◽  
Lianghui Ding ◽  
Feng Yang
Author(s):  
Aditi Sharma ◽  
Ashish Kumar Sharma ◽  
Laxmi Narayan Balai

In this paper, we have optimize specificities with the use of massive MIMO in 5 G systems. Massive MIMO uses a large number, low cost and low power antennas at the base stations. These antennas provide benefit such as improved spectrum performance, which allows the base station to serve more users, reduced latency due to reduced fading power consumption and much more. By employing the lens antenna array, beam space MIMO can utilize beam selection to reduce the number of required RF chains in mm Wave massive MIMO systems without obvious performance loss. However, to achieve the capacity-approaching performance, beam selection requires the accurate information of beam space channel of large size, which is challenging, especially when the number of RF chains is limited. To solve this problem, in this paper we propose a reliable support detection (SD)-based channel estimation scheme. In this work we first design an adaptive selecting network for mm-wave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beam space channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of the mm-wave beam space channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beam space channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy even in the low SNR region as the structural characteristics of beam space channel can be exploited.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Imran Khan ◽  
Joel J. P. C. Rodrigues ◽  
Jalal Al-Muhtadi ◽  
Muhammad Irfan Khattak ◽  
Yousaf Khan ◽  
...  

Channel state information (CSI) feedback in massive MIMO systems is too large due to large pilot overhead. It is due to the large channel matrix dimension which depends on the number of base station (BS) antennas and consumes the majority of scarce radio resources. To solve this problem, we proposed a scheme for efficient CSI acquisition and reduced pilot overhead. It is based on the separation mechanism for the channel matrix. The spatial correlation among multiuser channel matrices in the virtual angular domain is utilized to split the channel matrix. Then, the two parts of the matrix are estimated by deploying the compressed sensing (CS) techniques. This scheme is novel in the sense that the user equipment (UE) directly transmits the received symbols from the BS to the BS, so a joint CSI recovery is performed at the BS. Simulation results show that the proposed channel estimation scheme effectively estimates the channel with reduced pilot overhead and improved performance as compared with the state-of-the-art schemes.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 36 ◽  
Author(s):  
Seoyoung Yu ◽  
Jeong Woo Lee

We propose a generation scheme for a sounding reference signal (SRS) suitable for supporting a large number of users in massive multi-input multi-output (MIMO) system with a distributed antenna system (DAS) environment. The proposed SRS can alleviate the pilot contamination problem which occurs inherently in the multi-user system due to the limited number of orthogonal sequences. The proposed SRS sequence is generated by applying a well-chosen phase rotation to the conventional LTE/LTE-A SRS sequences without requiring an increased amount of resource usage. We also propose using the correlation-aided channel estimation algorithm as a supplemental scheme to obtain more reliable and refined channel estimation. It is shown that the proposed SRS sequence and the supplemental channel estimation scheme improve significantly the channel estimation performance in multi-user massive MIMO systems.


Sign in / Sign up

Export Citation Format

Share Document