A Segment-Average Based Channel Estimation Scheme for One-Bit Massive MIMO Systems with Deep Neural Network

Author(s):  
Ruifang Zhu ◽  
Guomei Zhang
2020 ◽  
Vol 19 (3) ◽  
pp. 2079-2090 ◽  
Author(s):  
Eren Balevi ◽  
Akash Doshi ◽  
Jeffrey G. Andrews

Author(s):  
Aditi Sharma ◽  
Ashish Kumar Sharma ◽  
Laxmi Narayan Balai

In this paper, we have optimize specificities with the use of massive MIMO in 5 G systems. Massive MIMO uses a large number, low cost and low power antennas at the base stations. These antennas provide benefit such as improved spectrum performance, which allows the base station to serve more users, reduced latency due to reduced fading power consumption and much more. By employing the lens antenna array, beam space MIMO can utilize beam selection to reduce the number of required RF chains in mm Wave massive MIMO systems without obvious performance loss. However, to achieve the capacity-approaching performance, beam selection requires the accurate information of beam space channel of large size, which is challenging, especially when the number of RF chains is limited. To solve this problem, in this paper we propose a reliable support detection (SD)-based channel estimation scheme. In this work we first design an adaptive selecting network for mm-wave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beam space channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of the mm-wave beam space channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beam space channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy even in the low SNR region as the structural characteristics of beam space channel can be exploited.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Imran Khan ◽  
Joel J. P. C. Rodrigues ◽  
Jalal Al-Muhtadi ◽  
Muhammad Irfan Khattak ◽  
Yousaf Khan ◽  
...  

Channel state information (CSI) feedback in massive MIMO systems is too large due to large pilot overhead. It is due to the large channel matrix dimension which depends on the number of base station (BS) antennas and consumes the majority of scarce radio resources. To solve this problem, we proposed a scheme for efficient CSI acquisition and reduced pilot overhead. It is based on the separation mechanism for the channel matrix. The spatial correlation among multiuser channel matrices in the virtual angular domain is utilized to split the channel matrix. Then, the two parts of the matrix are estimated by deploying the compressed sensing (CS) techniques. This scheme is novel in the sense that the user equipment (UE) directly transmits the received symbols from the BS to the BS, so a joint CSI recovery is performed at the BS. Simulation results show that the proposed channel estimation scheme effectively estimates the channel with reduced pilot overhead and improved performance as compared with the state-of-the-art schemes.


Sign in / Sign up

Export Citation Format

Share Document