Deep-learning-based tracking-error prediction for two-axis machining

Author(s):  
Wan-Ru Wu ◽  
Peng-Sheng Chen
2021 ◽  
Author(s):  
Yakun Jiang ◽  
Jihong Chen ◽  
Huicheng Zhou ◽  
Jianzhong Yang ◽  
Pengcheng Hu ◽  
...  

Abstract Contour error compensation of the Computer Numerical Control (CNC) machine tool is a vital technology that can improve machining accuracy and quality. To achieve this goal, the tracking error of a feeding axis, which is a dominant issue incurring the contour error, should be firstly modeled and then a proper compensation strategy should be determined. However, building the precise tracking error prediction model is a challenging task because of the nonlinear issues like backlash and friction involved in the feeding axis; besides, the optimal compensation parameter is also difficult to determine because it is sensitive to the machining tool path. In this paper, a set of novel approaches for contour error prediction and compensation is presented based on the technologies of deep learning and reinforcement learning. By utilizing the internal data of the CNC system, the tracking error of the feeding axis is modeled as a Nonlinear Auto-Regressive Long-Short Term Memory (NAR-LSTM) network, considering all the nonlinear issues of the feeding axis. Given the contour error as calculated based on the predicted tracking error of each feeding axis, a compensation strategy is presented with its parameters identified efficiently by a Time-Series Deep Q-Network (TS-DQN) as designed in our work. To validate the feasibility and advantage of the proposed approaches, extensive experiments are conducted, testifying that, our approaches can predict the tracking error and contour error with very good precision (better than about 99% and 90% respectively), and the contour error compensated based on the predicted results and our compensation strategy is significantly reduced (about 70%~85% reduction) with the machining quality improved drastically (machining error reduced about 50%).


2021 ◽  
pp. 1-1
Author(s):  
Abu Shafin Mohammad Mahdee Jameel ◽  
Ahmed P. Mohamed ◽  
Xiwen Zhang ◽  
Aly El Gamal

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Wenli Sun ◽  
Xu Gao

Trajectory tracking control based on waypoint behavior is a promising way for unmanned surface vehicle (USV) to achieve autonomous navigation. This study is aimed at the guidance progress in the kinematics; the artificial intelligence method of deep learning is adopted to improve the trajectory tracking level of USV. First, two deep neural network (DNN) models are constructed to evaluate navigation effects and to estimate guidance law parameters in real time, respectively. We then pretrain the DNN using a Gaussian–Bernoulli restricted Boltzmann machine to further improve the accuracy of predicting navigation effect. Finally, two DNNs are connected in parallel with the control loop of USV to provide predictive supervision and auxiliary decision making for traditional control methods. This kind of parallel way conforms to the ship manipulation of habit. Furthermore, we develop a new application on the basis of Mission Oriented Operating Suite Interval Programming named “pDeepLearning.” It can predict the navigation effect online by DNN and adjust the guidance law parameters according to the effect level. The experimental results show that, compared with the original waypoint behavior of USV, the prediction model proposed in this study reduces the trajectory tracking error by 19.0% and increases the waypoint behavior effect level.


Sign in / Sign up

Export Citation Format

Share Document