Modelling and control of a full vehicle active suspension system

Author(s):  
Marek Sibielak ◽  
Waldemar Raczka ◽  
Jaroslaw Konieczny
2020 ◽  
Vol 1716 ◽  
pp. 012031
Author(s):  
M Muthukumar ◽  
S V Arjun ◽  
D Saravanakumar ◽  
G Sakthivel ◽  
R Jegadeeshwaran

2012 ◽  
Vol 479-481 ◽  
pp. 1355-1360
Author(s):  
Jian Guo Chen ◽  
Jun Sheng Cheng ◽  
Yong Hong Nie

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. When magneto-rheological dampers are adopted to attenuate vibration of the sprung mass, the damping forces of the dampers need to be distributed. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear full vehicle semi-active suspension model is proposed. Considering the realization of the control of magneto-rheological dampers, a hysteretic polynomial damper model is adopted. A differential geometry approach is used to decouple the nonlinear suspension system, so that the wheels and sprung mass become independent linear subsystems and independent to each other. A control rule of vibration attenuation is designed, by which the control current applied to the magneto-rheological damper is calculated, and used for the decoupled suspension system. The simulations show that the acceleration of the sprung mass is attenuated greatly, which indicates that the control algorithm is effective and the hysteretic polynomial damper model is practicable.


2002 ◽  
Vol 45 (1) ◽  
pp. 43-49 ◽  
Author(s):  
W.K.N. Anakwa ◽  
D.R. Thomas ◽  
S.C. Jones ◽  
J. Bush ◽  
D. Green ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 97-106
Author(s):  
A. Aldair ◽  
W. J. Wang

The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PIλDμ (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.


Sign in / Sign up

Export Citation Format

Share Document