Research on the Decoupling Control Algorithm of Full Vehicle Semi-Active Suspension

2012 ◽  
Vol 479-481 ◽  
pp. 1355-1360
Author(s):  
Jian Guo Chen ◽  
Jun Sheng Cheng ◽  
Yong Hong Nie

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. When magneto-rheological dampers are adopted to attenuate vibration of the sprung mass, the damping forces of the dampers need to be distributed. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear full vehicle semi-active suspension model is proposed. Considering the realization of the control of magneto-rheological dampers, a hysteretic polynomial damper model is adopted. A differential geometry approach is used to decouple the nonlinear suspension system, so that the wheels and sprung mass become independent linear subsystems and independent to each other. A control rule of vibration attenuation is designed, by which the control current applied to the magneto-rheological damper is calculated, and used for the decoupled suspension system. The simulations show that the acceleration of the sprung mass is attenuated greatly, which indicates that the control algorithm is effective and the hysteretic polynomial damper model is practicable.

2013 ◽  
Vol 456 ◽  
pp. 14-17
Author(s):  
Jian Guo Chen ◽  
Xia Feng ◽  
Xiao Ling Zhang

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear half vehicle model with active suspension is established and a differential geometry approach is used to decouple the nonlinear suspension system. The decoupled system becomes independent linear subsystems, though pole assignment, the vibration attenuation of the sprung mass is achieved. The simulations show that the vertical and the pitching motion of the sprung mass are attenuated greatly, which indicates that the control algorithm is effective.


Author(s):  
Ruochen Wang ◽  
Fupeng Sheng ◽  
Renkai Ding ◽  
Xiangpeng Meng ◽  
Zeyun Sun

This paper presents a vehicle attitude compensation algorithm based on state observer for vehicle semi-active suspension system equipped with four magneto-rheological dampers (MR dampers). The proposed algorithm including magneto-rheological damper control algorithm, attitude compensation control algorithm, and design method of state observer is to effectively improve ride comfort and control vehicle body attitude. First, the actual equivalent damping of magneto-rheological damper is introduced into state observer, and the parameter matrix of suspension system is updated in real time via precise discretization method to enhance the estimation accuracy of state observer. Then, the velocity signal estimated by state observer is employed as the evidence to realize attitude compensation control for vehicle body. Finally, relevant co-simulations and hardware-in-the-loop test are conducted to verify the validity of the proposed control algorithm. Results of simulations and tests demonstrate that the application of the control algorithm proposed in this paper can significantly improve ride comfort of magneto-rheological suspension and optimize vehicle body attitude.


2020 ◽  
Vol 25 (4) ◽  
pp. 532-541
Author(s):  
Shailendra Kumar ◽  
Amit Medhavi ◽  
Raghuvir Kumar

Passive suspensions are designed to satisfy the conflicting criteria of riding comfort and vehicle handling. An active suspension system attempts to overcome these compromises to provide the best performance for vehicle control. Different types of mathematical models have been used to study the suspension system of a vehicle. The quarter vehicle model is used for initial investigation. Later, the half vehicle and full vehicle models are used for the study, which is closer to the actual model of a vehicle suspension. In this paper, the behavior of a suspension system is analyzed using the full vehicle model. In the current work, the dynamic equation and their state-space formulation are presented for the full vehicle model to understand the system prior to the controller design. The open-loop response of the full vehicle suspension system, when subjected to various road excitations, is also studied. The procedure of modeling a SIMULINK model for passive suspensions system is discussed in detail. Design of the simple Proportional Integral Derivative (PID) feedback and feed-forward controller is presented for the active suspension system using transfer functions. Closed-loop transfer functions are also derived and their responses are plotted. To analyze the rollover behavior simulation for cornering is also performed in the current study.


2021 ◽  
Vol 850 (1) ◽  
pp. 012035
Author(s):  
Sarthak Vaishnav ◽  
Jerry Paul ◽  
R Deivanathan

Abstract A vehicle suspension system is designed to maintain directional control (road holding) during manoeuvring or braking while supporting the vehicle’s weight and provide stability (handling). The structure of a suspension system consists of parts connecting the axle to wheel assembly and the chassis of an automobile, thus supporting engine, transmission system and vehicle load. Suspension system components consist of dampening devices, springs, steering knuckles, ball joints and spindles or axles. It could be designed according to a passive, semi-active or active mode of working. For evaluation, this assembly could be modelled as a spring-mass-damper system. The semi-active suspension system has been modelled with a magneto-rheological damper following the Bingham plastic theory. In this paper, the performance of a passive and a semi-active suspension of a quarter car model are compared by MATLAB simulation. Thus, a better suspension system is found out by simulating with different road conditions.


Author(s):  
P. Sathishkumar ◽  
S. Rajeshkumar ◽  
T.S. Rajalakshmi ◽  
J. Thiyagarajan ◽  
J. Arivarasan

The main objective of the variable damper controlled vehicle suspension system is to reduce the discomfort identified by passengers which arises from road roughness and to increase the ride handling related with the rolling, pitching and heave movements. This imposes a very fast and accurate variable damper to meet as much control objectives, as possible. The method of the proposed damper is to reduce the vibrations on each corner of vehicle by providing control forces to suspension system while travelling on uneven road. Numerical simulations on a full vehicle suspension model are performed in the Matlab Simulink toolboxes to evaluate the effectiveness of the proposed approach. The obtained results show that the proposed system provides better results than the conventional suspension system.


Author(s):  
Wenfeng Li ◽  
Xiaomin Dong ◽  
Jianqiang Yu ◽  
Jun Xi ◽  
Chengwang Pan

To avoid the limitation of conventional vehicle magnetorheological (MR) suspension, a variable damping and inertia device is applied in the vehicle suspension with MR technology. A semi-active adaptive MR inerter (AMRI) is discussed. A quarter car suspension model with an AMRI installed in parallel with a double-ended MR damper (D-MRD) is considered. First, the vehicle suspension with variable damping and inertia is analyzed. The prototype of D-MRD and MR variable inertia flywheel (MRVIF) are fabricated and tested respectively. Then, the control model of D-MRD and MRVIF is developed on the basis of test data. An improved Fuzzy PID controller for the semi-active suspension with D-MRD and AMRI is formulated. Numerical simulation is investigated to validate the proposed variable damping and inertia device. The results demonstrate that the performance of the semi-active suspension with D-MRD and AMRI can achieve much better ride comfort than the semi-active suspension with only D-MRD or AMRI.


Author(s):  
Han Xu ◽  
Youqun Zhao ◽  
Qiuwei Wang ◽  
Fen Lin ◽  
Wei Pi

Mechanical elastic wheel (MEW) has the advantages of explosion-proof and prick-proof, which is conducive to the safety and maneuverability of the vehicle. However, the research on the performance of the full vehicle equipped with MEW is rare. Considering the particular properties of the radial and cornering stiffness of MEW, this paper aims to take into account both ride comfort and yaw stability of the vehicle equipped with the MEW through a nonlinear control method. Firstly, a 9-DOF nonlinear full vehicle model with the MEW tire model is constructed. The tire model is fitted based on experimental data, which corrects the impacts of vertical load on the cornering characteristic of the MEW. Then the full vehicle system is decoupled into four subsystems with a single input and a single output each according to active disturbance rejection control (ADRC) technology. In this process, the coupling relationship between different motions of the original system is regarded as the disturbance. Afterward, a novel nonlinear extended state observer is proposed, which has a similar structure of traditional linear extended state observer but smaller estimation error. Next, the control law of Backstepping-ADRC for different subsystems are derived respectively based on the Lyapunov theory. For the first time, the Backstepping-ADRC method is applied to the decoupling control of four-wheel steering and active suspension systems. Furthermore, the parameters of the controllers are adjusted through a multi-objective optimization scheme. Finally, simulation results validate the effectiveness and robustness of the proposed controller, especially when encountering some disturbances. The indices of vehicle body attitude and ride comfort are improved significantly, and also the yaw stability is guaranteed simultaneously.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Sign in / Sign up

Export Citation Format

Share Document