On Mitigation of Four-Wave Mixing in High Capacity Ultra-DWDM System

Author(s):  
Tomas Huszanik ◽  
Jan Turan ◽  
L'ubos Ovsenik
2021 ◽  
Vol 15 (1) ◽  
pp. 53-65
Author(s):  
Robert Oluwayimika Abolade ◽  
Oluwaseun Olayinka Tooki ◽  
David Oluwagbemiga Aborisade

The main challenge faced in today's telecommunication is the ever increasing demand for bandwidth and data rates. The desire to expand the capacity of fiber optic communication to accommodate this demand accelerated the development of high capacity Dense Wavelength Division Multiplexing (DWDM) transmission equipment. However, nonlinear impairments are the fundamental limiting mechanisms to the amount of data that can be transmitted in DWDM. In DWDM, Four Wave Mixing is the most critical of nonlinear effects in fibre optics communication. This effect limits the DWDM’s channel capacity. There are numerous researches on nonlinear impairments that show the intricacy of FWM phenomena in DWDM system. This article present review of the several measures which have been carried out by researchers to overcome nonlinear effects in DWDM. Such measures include Modulation Formats, Channel Spacing, Channel Shuffling Algorithm and Electro-Optic Phase Modulation. The review provides insight into the methods, parameters and approaches used by other researchers. This will pave way for can thus lead to significant improvement in the design of DWDM system.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Navjot Singh ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractAmplification through hybrid optical amplifiers (HOAs) is a propitious and proficient technology for high speed and high capacity dense wavelength-division-multiplexing (DWDM) systems. HOAs are intended to improve system reach and to accomplish wide gain bandwidth with enhanced flatness of gain. In this work, an ultradense 16 channel WDM system is demonstrated and performance of diverse hybrid amplifiers is evaluated in terms of output power, Q-factor, gain flatness and BER. Spacing among the WDM channels is 25 GHz in order to make system bandwidth efficient and scrutinized its effect on four wave mixing (FWM) in case of EDFA-EDFA, Raman-EDFA and SOA-EDFA. It is observed that SOA-EDFA is more and Raman-EDFA is less prone to FWM. Moreover, for distance 20 Km–140 Km, Raman-EDFA is optimal configuration for amplification and from 150 Km–200  Km, SOA-EDFA shows better performance. For prolonged link lengths such as beyond 200  Km, EDFA-EDFA is a right hybrid amplifier. In order to achieve maximum gain flatness in proposed architecture, EDFA-EDFA is recommended to use.


Author(s):  
Naif Alsowaidi ◽  
Tawfig Eltaif ◽  
Mohd Ridzuan Mokhtar ◽  
Belal A. Hamida

<span>In this paper, electro-optic phase modulator (EOPM) is used to reduce the effect of four-wave mixing (FWM), which is placed after 64 DWDM-channels multiplexer. It was found that the FWM is very sensitive to the phase deviation of the EOPM, and it can be reduced by introducing a phase shift between pulses. The simulation results confirmed the ability of the EOPM in improving the system performanceas indicated by the bit error rates. In term of comparison, the system of 64 channels based intensity modulated/ direct detection (IM/DD) transmission achieved bit error rate of 10<sup>-26</sup> over 30 km and 70km without and with EOPM, respectively.</span>


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Gaganpreet Kaur ◽  
Sanjay Sharma ◽  
Gurmeet Kaur

We demonstrate improved performance of parametric amplifier cascaded with Raman amplifier for gain of 54.79 dB. We report amplification of L-band using 100 × 10 Gbps Dense Wavelength Division Multiplexed (DWDM) system with 25 GHz channel spacing. The gain achieved is the highest reported so far with gain flatness of 3.38 dB without using any gain flattening technique. Hybrid modulated parametric pump is used for suppressing four-wave mixing (FWM) around pump region, resulting in improvement of gain flatness by 2.42 dB. The peak to peak variation of gain is achieved less than 1.6 dB. DWDM system with 16-channel, 25 GHz spaced system has been analyzed thoroughly with hybrid modulated parametric pump amplified Raman-FOPA amplifier for gain flatness and improved performance in terms of BER and Q-factor.


Sign in / Sign up

Export Citation Format

Share Document