Modeling and full state feedback adaptive control of a two dimensional linear motor

Author(s):  
A.Y. Orbak
2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Jian S. Dai

Abstract This paper attempts to address the quandary of flexible-joint humanoid balancing performance augmentation, via the introduction of the Full-State Feedback Variable Impedance Control (FSFVIC), and Model-Free Compliant Floating-base VIC (MCFVIC) schemes. In comparison to rigid-joint humanoid robots, efficient balancing control of compliant bipeds, powered by Series Elastic Actuators (or harmonic drives), requires the design of more sophisticated controllers encapsulating both the motor and underactuated link dynamics. It has been demonstrated that Variable Impedance Control (VIC) can improve robotic interaction performance, albeit by introducing energy-injecting elements that may jeopardize closed-loop stability. To this end, the novel FSFVIC and MCFVIC schemes are proposed, which amalgamate both collocated and non-collocated feedback gains, with power-shaping signals that are capable of preserving the system's stability/passivity during VIC. The FSFVIC and MCFVIC stably modulate the system's collocated state gains to augment balancing performance, in addition to the non-collocated state gains that dictate the position control accuracy. Utilization of arbitrarily low-impedance gains is permitted by both the FSFVIC and MCFVIC schemes propounded herein. An array of experiments involving the COmpliant huMANoid reveals that significant balancing performance amelioration is achievable through online modulation of the full-state feedback gains (VIC), as compared to utilization of invariant impedance control.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Author(s):  
Marcio S. de Queiroz ◽  
Darren M. Dawson ◽  
Siddharth P. Nagarkatti ◽  
Fumin Zhang

Author(s):  
Yang Zhu ◽  
Miroslav Krstic

This chapter investigates adaptive control for uncertain multi-input LTI systems with distinct discrete actuator delays. In parallel with the single-input case in the third chapter, four types of basic uncertainties come with multi-input LTI time-delay systems. Different combinations of the four uncertainties above result in different design difficulties. For example, when the full-state measurement of the transport PDE state is available, the global stabilization is acquired, whereas when the actuator state is not measurable and the delay value is unknown at the same time, the problem is not solvable globally, since the problem is not linearly parameterized. The chapter then summarizes the different collections of uncertainties for the multi-input case. When some of the four variables are unknown or unmeasured, the basic idea of certainty-equivalence-based adaptive control is to use an estimator (a parameter estimator or a state estimator) to replace the unknown variables in the PDE-based framework in the previous chapter, and carefully select their adaptive update laws based on Lyapunov-based analysis.


Sign in / Sign up

Export Citation Format

Share Document