Output control approach “consecutive compensator” providing exponential and L∞-stability for nonlinear systems with delay and disturbance

Author(s):  
Anton A. Pyrkin ◽  
Alexey A. Bobtsov ◽  
Sergey A. Kolyubin ◽  
Maxim V. Faronov ◽  
Sergey V. Shavetov ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 2312
Author(s):  
Dengguo Xu ◽  
Qinglin Wang ◽  
Yuan Li

In this study, based on the policy iteration (PI) in reinforcement learning (RL), an optimal adaptive control approach is established to solve robust control problems of nonlinear systems with internal and input uncertainties. First, the robust control is converted into solving an optimal control containing a nominal or auxiliary system with a predefined performance index. It is demonstrated that the optimal control law enables the considered system globally asymptotically stable for all admissible uncertainties. Second, based on the Bellman optimality principle, the online PI algorithms are proposed to calculate robust controllers for the matched and the mismatched uncertain systems. The approximate structure of the robust control law is obtained by approximating the optimal cost function with neural network in PI algorithms. Finally, in order to illustrate the availability of the proposed algorithm and theoretical results, some numerical examples are provided.


2011 ◽  
Vol 383-390 ◽  
pp. 290-296
Author(s):  
Yong Hong Zhu ◽  
Wen Zhong Gao

Wavelet neural network based adaptive robust output tracking control approach is proposed for a class of MIMO nonlinear systems with unknown nonlinearities in this paper. A wavelet network is constructed as an alternative to a neural network to approximate unknown nonlinearities of the classes of systems. The proposed WNN adaptive law is used to compensate the dynamic inverse errors of the classes of systems. The robust control law is designed to attenuate the effects of approximate errors and external disturbances. It is proved that the controller proposed can guarantee that all the signals in the closed-loop control system are uniformly ultimately bounded (UUB) in the sense of Lyapunov. In the end, a simulation example is presented to illustrate the effectiveness and the applicability of the suggested method.


Author(s):  
Fujin Jia ◽  
Junwei Lu ◽  
Yong-Min Li ◽  
Fangyuan Li

In this paper, the global finite-time stabilization (FTS) of nonlinear systems with unknown functions (UFs) is studied. Firstly, in order to deal with UFs, a Lemma is proposed to avoid the Assumptions of UFs. Secondly, based on this Lemma, the control algorithm designed by using backstepping has no partial derivative of virtual controllers, so it avoids the “differential explosion” problem of backstepping. Thirdly, by using Lyapunov analysis method, backstepping and FTS method, a global FTS control algorithm of nonlinear systems with UFs is proposed. Finally, the feasibility of developed control approach is illustrated by the simulation results of a manipulator.


2020 ◽  
Vol 42 (13) ◽  
pp. 2482-2491
Author(s):  
Shan-Liang Zhu ◽  
De-Yu Duan ◽  
Lei Chu ◽  
Ming-Xin Wang ◽  
Yu-Qun Han ◽  
...  

In this paper, a multi-dimensional Taylor network (MTN)-based adaptive tracking control approach is proposed for a class of switched nonlinear systems with input nonlinearity. Firstly, the input nonlinearity is assumed to be bounded by a sector interval. Secondly, with the help of MTNs approximating the unknown nonlinear functions, a novel adaptive MTN control scheme has the advantages of low cost, simple structure and real time feature is developed via backstepping technique. It is shown that the tracking error finally converges to a small domain around the origin and all signals in the closed-loop system are bounded. Finally, two examples are given to demonstrate the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document