Robust adaptive backstepping excitation controller design for simple power system models with external disturbances

Author(s):  
T. K. Roy ◽  
M. A. Mahmud ◽  
W. X. Shen ◽  
A. M. T. Oo
Author(s):  
YUNJIE WU ◽  
BAITING LIU ◽  
WULONG ZHANG ◽  
XIAODONG LIU

For flight simulator system, a kind of Adaptive Backstepping Sliding Mode Controller (ABSMC) based on Radial Base Function Neural Network (RBFNN) observer is presented. The sliding mode control theory is famous by its characteristic that it is insensitive to the external disturbances and parameters uncertainties. Combining this characteristic with Backstepping method can simplifies the controller design. And the addition of the terminal attractor can make the arrival time shorten greatly. However, too large external disturbances and parameters uncertainties are still not allowed to the system, and the design process of ABSMC does not have the upper bound information of disturbance until a RBFNN observer is designed to solve the problems. The simulation results show that the proposed scheme can improve the tracking precision and reduce the chattering of the control input, and the system has a higher robustness.


2007 ◽  
Vol 31 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Jing Zhou ◽  
Changyun Wen ◽  
Chengjin Zhang

Piezo-positioning mechanisms are often used in high-precision positioning applications. Due to their materials, nonlinear hysteretic behavior is commonly observed in such mechanisms and can be described by a LuGre model. In this paper, we develop two robust adaptive backstepping control algorithms for piezo-positioning mechanisms. In the first scheme, we take the structure of the LuGre model into account in the controller design, if the parameters of the model are known. A nonlinear observer is designed to estimate the hysteresis force. In the second scheme, there is no apriori information required from these parameters and thus they can be allowed totally uncertain. In this case, the LuGre model is divided into two parts. While the unknown parameters of one part are incorporated with unknown system parameters for estimation, the effect of the other part is treated as a bounded disturbance. An update law is used to estimate the bound involving this partial hysteresis effect and the external load. For both schemes, it is shown that not only global stability is guaranteed by the proposed controller, but also both transient and asymptotic performances are quantified as explicit functions of the design parameters so that designers can tune the design parameters in an explicit way to obtain the required closed loop behavior.


Sign in / Sign up

Export Citation Format

Share Document