Self-Stabilization of a riderless bicycle with a control moment gyroscope via model-based active disturbance rejection control

Author(s):  
Sergio Tamayo-Leon ◽  
Santiago Pulido-Guerrero ◽  
Horacio Coral-Enriquez
2021 ◽  
pp. 002029402110000
Author(s):  
Wei Wei ◽  
Bowen Duan ◽  
Min Zuo ◽  
Weicun Zhang

Both speed and accuracy are key issues in nano-positioning. However, hysteresis existing in piezoelectric actuators severely reduces the positioning speed and accuracy. In order to address the hysteresis, a U-model based active disturbance rejection control is proposed. Based on the linear active disturbance rejection control, a controlled plant is dynamically transformed to be pure integrators. Then, according to the U-model control, a common inversion is obtained and the controlled plant is converted to be “1.” By integrating advantages of both linear active disturbance rejection control and U-model control, the U-model based active disturbance rejection control does promote the reference tracking speed and accuracy. Stability and steady-state error of the close-loop system have been analyzed. Phase lag between the system output and the control input has been effectively eliminated, and the phase-leading advantage of the U-model based active disturbance rejection control has been confirmed. Experimental results show that the U-model based active disturbance rejection control is capable of achieving faster and more accurate positioning. Remarkable improvements and practical realization make the U-model based active disturbance rejection control more promising in nano-positioning.


ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 461-466 ◽  
Author(s):  
Hao LIU ◽  
Tao WANG ◽  
Wei FAN ◽  
Tong ZHAO ◽  
Junzheng WANG

Sign in / Sign up

Export Citation Format

Share Document