Indirect Estimation Based Active Disturbance Rejection Control for Solar Sail Station-Keeping

Author(s):  
Jia Huang ◽  
Yuliang Bai ◽  
James D. Biggs ◽  
Naigang Cui
ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 461-466 ◽  
Author(s):  
Hao LIU ◽  
Tao WANG ◽  
Wei FAN ◽  
Tong ZHAO ◽  
Junzheng WANG

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Manh Hung Nguyen ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

In this paper, an active disturbance rejection control is designed to improve the position tracking performance of an electro-hydraulic actuation system in the presence of parametric uncertainties, non-parametric uncertainties, and external disturbances as well. The disturbance observers (Dos) are proposed to estimate not only the matched lumped uncertainties but also mismatched disturbance. Without the velocity measurement, the unmeasurable angular velocity is robustly calculated based on the high-order Levant’s exact differentiator. These disturbances and angular velocity are integrated into the control design system based on the backstepping framework which guarantees high-accuracy tracking performance. The system stability analysis is analyzed by using the Lyapunov theory. Simulations based on an electro-hydraulic rotary actuator are conducted to verify the effectiveness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document