Generalization ability analysis of one-dimensional wavelet neural network by simulations

Author(s):  
Pengsheng Zheng ◽  
Wansheng Tang ◽  
Jianxiong Zhang
2011 ◽  
Vol 105-107 ◽  
pp. 2169-2173
Author(s):  
Zong Chang Xu ◽  
Xue Qin Tang ◽  
Shu Feng Huang

Wavelet Neural Network (WNN) integration modeling based on Rough Set (RS) is studied. An integration modeling algorithm named RS-WNN, which first introduces a heuristic attribute reduction recursion algorithm to determine the optimum decision attributes and then conducts WNN modeling, is proposed. This method is adopted to more effectively eliminate the redundant attributes, lower the structure complexity of WNN, which reduce the time of training and improve the generalization ability of WNN. The result of the experiment shows this method is superior and efficient.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mingxing Jia ◽  
Yuemei Xu ◽  
Maoyi Hong ◽  
Xiyu Hu

As one of the most vital parts of rotating equipment, it is an essential work to diagnose rolling bearing failure. The traditional signal processing-based rolling bearing fault diagnosis algorithms rely on artificial feature extraction and expert knowledge. The working condition of rolling bearings is complex and changeable, so the traditional algorithm is slightly lacking adaptability. The damage degree also plays a crucial role in fault monitoring. Different damage degrees may take different remedial measures, but traditional fault-diagnosis algorithms roughly divide the damage degree into several categories, which do not correspond to the continuous value of the damage degree. To solve the abovementioned two problems, this paper proposes a fault-diagnosis algorithm based on “end-to-end” one-dimensional convolutional neural network. The one-dimensional convolution kernel and the pooling layer are directly applied to the original time domain signal. Feature extraction and classifier are merged together, and the extracted features are used to judge the damage degree at the same time. Then, the generalization ability of the model is studied under a variety of conditions. Experiments show that the algorithm can achieve more than 99% accuracy and can accurately give the damage degree of the bearing. It has good performance under different speeds, different types of motors, and different sampling frequencies, and so it has good generalization ability.


2009 ◽  
Vol 129 (7) ◽  
pp. 1356-1362
Author(s):  
Kunikazu Kobayashi ◽  
Masanao Obayashi ◽  
Takashi Kuremoto

2020 ◽  
Vol 2020 (8) ◽  
pp. 188-1-188-7
Author(s):  
Xiaoyu Xiang ◽  
Yang Cheng ◽  
Jianhang Chen ◽  
Qian Lin ◽  
Jan Allebach

Image aesthetic assessment has always been regarded as a challenging task because of the variability of subjective preference. Besides, the assessment of a photo is also related to its style, semantic content, etc. Conventionally, the estimations of aesthetic score and style for an image are treated as separate problems. In this paper, we explore the inter-relatedness between the aesthetics and image style, and design a neural network that can jointly categorize image by styles and give an aesthetic score distribution. To this end, we propose a multi-task network (MTNet) with an aesthetic column serving as a score predictor and a style column serving as a style classifier. The angular-softmax loss is applied in training primary style classifiers to maximize the margin among classes in single-label training data; the semi-supervised method is applied to improve the network’s generalization ability iteratively. We combine the regression loss and classification loss in training aesthetic score. Experiments on the AVA dataset show the superiority of our network in both image attributes classification and aesthetic ranking tasks.


Sign in / Sign up

Export Citation Format

Share Document