Fault tolerant control of fractional-order singular systems against actuator faults

Author(s):  
Xuefeng Zhang ◽  
Yepeng He
2020 ◽  
Vol 104 ◽  
pp. 105939 ◽  
Author(s):  
Ziquan Yu ◽  
Youmin Zhang ◽  
Bin Jiang ◽  
Chun-Yi Su ◽  
Jun Fu ◽  
...  

2021 ◽  
pp. 107754632098018
Author(s):  
Xuefeng Zhang ◽  
Wenkai Huang

This article proposes an integral sliding mode control scheme for a class of uncertain nonlinear singular fractional-order systems subject to actuator faults. The interval type-2 Takagi–Sugeno model is used to represent the singular fractional-order systems. First, a novel integral sliding surface is constructed. A sufficient condition is given in terms of linear matrix inequalities which guarantees the admissibility and the robustness of the singular fractional-order systems against actuator faults. Then, aiming at the fault information which is difficult to get in the practical application, an adaptive estimation of fault information is proposed to update the sliding mode controller. A sliding mode fault tolerant control law is designed to make the singular fractional-order systems reach the sliding surface in a finite time. At last, the applicability and effectiveness of the proposed method is illustrated by a numerical simulation example.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan-Hua Ma ◽  
Xian Du ◽  
Lin-Feng Gou ◽  
Si-Xin Wen

AbstractIn this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


Sign in / Sign up

Export Citation Format

Share Document