Research on Modeling of Wind Speed-Power Curve for Wind Farm

Author(s):  
Xu Haiyan ◽  
Chang Yuqing ◽  
Wang Shu ◽  
Yao Yuan
Keyword(s):  
2013 ◽  
Vol 336-338 ◽  
pp. 1114-1117 ◽  
Author(s):  
Ying Zhi Liu ◽  
Wen Xia Liu

This paper elaborates the effect of wind speed on the output power of the wind farms at different locations. It also describes the correction of the power curve and shows the comparison chart of the standard power curve and the power curve after correction. In China's inland areas, wind farms altitude are generally higher, the air density is much different from the standard air density. The effect of air density on wind power output must be considered during the wind farm design.


2020 ◽  
Vol 5 (3) ◽  
pp. 1169-1190
Author(s):  
Patrick Murphy ◽  
Julie K. Lundquist ◽  
Paul Fleming

Abstract. Most megawatt-scale wind turbines align themselves into the wind as defined by the wind speed at or near the center of the rotor (hub height). However, both wind speed and wind direction can change with height across the area swept by the turbine blades. A turbine aligned to hub-height winds might experience suboptimal or superoptimal power production, depending on the changes in the vertical profile of wind, also known as shear. Using observed winds and power production over 6 months at a site in the high plains of North America, we quantify the sensitivity of a wind turbine's power production to wind speed shear and directional veer as well as atmospheric stability. We measure shear using metrics such as α (the log-law wind shear exponent), βbulk (a measure of bulk rotor-disk-layer veer), βtotal (a measure of total rotor-disk-layer veer), and rotor-equivalent wind speed (REWS; a measure of actual momentum encountered by the turbine by accounting for shear). We also consider the REWS with the inclusion of directional veer, REWSθ, although statistically significant differences in power production do not occur between REWS and REWSθ at our site. When REWS differs from the hub-height wind speed (as measured by either the lidar or a transfer function-corrected nacelle anemometer), the turbine power generation also differs from the mean power curve in a statistically significant way. This change in power can be more than 70 kW or up to 5 % of the rated power for a single 1.5 MW utility-scale turbine. Over a theoretical 100-turbine wind farm, these changes could lead to instantaneous power prediction gains or losses equivalent to the addition or loss of multiple utility-scale turbines. At this site, REWS is the most useful metric for segregating the turbine's power curve into high and low cases of power production when compared to the other shear or stability metrics. Therefore, REWS enables improved forecasts of power production.


2019 ◽  
Author(s):  
Patrick Murphy ◽  
Julie K. Lundquist ◽  
Paul Fleming

Abstract. Most megawatt-scale wind turbines align themselves into the wind as defined by the wind speed at or near the center of the rotor (hub height). However, both wind speed and wind direction can change with height across the area swept by the turbine blades. A turbine aligned to hub-height winds might experience suboptimal or superoptimal power production, depending on the changes in the vertical profile of wind, or shear. Using observed winds and power production over 6 months at a site in the high plains of North America, we quantify the sensitivity of a wind turbine's power production to wind speed shear and directional veer as well as atmospheric stability. We measure shear using metrics such as α (the log-law wind shear exponent), βbulk (a measure of bulk rotor-disk-layer veer), βtotal (a measure of total rotor-disk-layer veer) and rotor-equivalent wind speed (REWS), a measure of actual momentum encountered by the turbine by accounting for shear). We also consider the REWS with the inclusion of directional veer, REWSθ, although statistically significant differences in power production do not occur between REWS and REWSθ at our site. When REWS differs from the hub-height wind speed (as measured either by the lidar or a transfer function-corrected nacelle anemometer), the turbine power generation also differs from the mean power curve in a statistically significant way. This change in power can be more than 70 kW, or up to 5 % of the rated power for a single 1.5-MW utility-scale turbine. Over a theoretical 100-turbine wind farm, these changes could lead to instantaneous power prediction gains or losses equivalent to the addition or loss of multiple utility-scale turbines. At this site, REWS is the most useful metric for segregating the turbine's power curve into high and low cases of power production when compared to the other shear or stability metrics. Therefore, REWS enables improved forecasts of power production.


2012 ◽  
Vol 224 ◽  
pp. 401-405
Author(s):  
Xi Yun Yang ◽  
Peng Wei ◽  
Huan Liu ◽  
Bao Jun Sun

Accurate wind farm power prediction can relieve the disadvantageous impact of wind power plants on power systems and reduce the difficulty of the scheduling of power dispatching department. Improving accuracy of short-term wind speed prediction is the key of wind power prediction. The authors have studied the short-term wind power forecasting of power plants and proposed a model prediction method based on SVM with backstepping wind speed of power curve. In this method, the sequence of wind speed that is calculated according to the average power of the wind farm operating units and the scene of the power curve is the input of the SVM model. The results show that this method can meet the real-time needs of the prediction system, but also has better prediction accuracy, is a very valuable short-term wind power prediction method.


2021 ◽  
Author(s):  
Evgeny Atlaskin ◽  
Irene Suomi ◽  
Anders Lindfors

<p>Power curves for a substantial number of wind turbine generators (WTG) became available in a number of public sources during the recent years. They can be used to estimate the power production of a wind farm fleet with uncertainty determined by the accuracy and consistency of the power curve data. However, in order to estimate power losses inside a wind farm due to wind speed reduction caused by the wake effect, information on the thrust force, or widely used thrust coefficient (Ct), is required. Unlike power curves, Ct curves for the whole range of operating wind speeds of a WTG are still scarcely available in open sources. Typically, power and Ct curves are requested from a WTG manufacturer or wind farm owner under a non-disclosure agreement. However, in a research study or in calculations over a multitude of wind farms with a variety of wind turbine models, collecting this information from owners may be hardly possible. This study represents a simple method to define Ct curve statistically using power curve and general specifications of WTGs available in open sources. Preliminary results demonstrate reasonable correspondence between simulated and given data. The estimations are done in the context of aggregated wind power calculations based on reanalysis or forecast data, so that the uncertainty of wake wind speed caused by the uncertainty of predicted Ct is comparable, or do not exceed, the uncertainty of given wind speed. Although the method may not provide accurate fits at low wind speeds, it represents an essential alternative to using physical Computational Fluid Dynamics (CFD) models that are both more demanding to computer resources and require detailed information on the geometry of the rotor blades and physical properties of the rotor, which are even more unavailable in open sources than power curves.</p>


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Andrea Lombardi ◽  
Ludovico Terzi

The financial sustainability and the profitability of wind farms strongly depend on the efficiency of the conversion of wind kinetic energy. This motivates further research about the improvement of wind turbine power curve. If the site is characterized by a considerable occurrence of very high wind speeds, it can become particularly profitable to update the power curve management. This is commonly done by raising the cut-out velocity and the high wind speed cut-in regulating the hysteresis logic. Doing this, on one side, the wind turbine possibly undergoes strong vibration and loads. On the other side, the energy improvement is almost certain and the point is quantifying precisely its magnitude. In this work, the test case of an onshore wind farm in Italy is studied, featuring 17 2.3 MW wind turbines. Through the analysis of supervisory control and data acquisition (SCADA) data, the energy improvement from the extension of the power curve in the high wind speed region is simulated and measured. This could be useful for wind farm owners evaluating the realistic profitability of the installation of the power curve upgrade on their wind turbines. Furthermore, the present work is useful for the analysis of wind turbine behavior under extremely stressing load conditions.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


Sign in / Sign up

Export Citation Format

Share Document